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Implementation of a snow transport model in OpenFOAM

1 Introduction

The present document describes the implementation of an aeolian snow transport model within
the open source computational fluid dynamics (CFD) software OpenFOAM. It was developed
in the context of a master thesis at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and
the WSL Institute for Snow and Avalanche Research SLF, Switzerland. Two submodels are
added to the original OpenFOAM Lagrangian library to simulate the transport of snow particles
by the wind, in particular for medium- (saltation) and small-sized (suspension) particles.
Herein, we first describe the theoretical framework for snow transport processes and their
related mathematical expressions. Then, we present the OpenFOAM scripts embedding the
different Lagrangian submodels for snow movement along with the files defining the new solver
(snowBedFoam). This tutorial aims to make the modelling of snow transport more accessible to
the OpenFOAM community.

2 Theoretical background

The current knowledge of snow transport processes which contributed to the build-up of our
OpenFOAM model is described here. The text was inspired by the candidacy report of Brito

Melo (2019), which outlines the main literature findings on the aeolian transport of particles.

2.1 Snow transport: general aspects

The early work of Bagnold (1941) constitutes a reference for the aeolian transport of sand. Still,
his findings stay relevant to other particles, among which snow and its various interactions
with wind. Snow aeolian transport occurs at a wide range of elevations, from regions close
to the ground to high altitudes. Three main modes of transport are distinguished based on their
underlying physical processes: 1) saltation, which describes the motion of particles close to the
surface. In this mode, grains follow ballistic trajectories and return to the snow bed, possibly
rebounding and/or ejecting other particles; ; 2) suspension, which relates to the transport of
particles that are sufficiently light to be lifted higher up by turbulent eddies; 3) creep (or
reptation), which is the rolling of heavier particles along the surface due to impacting grains
or aerodynamic forces. Its contribution usually stays negligible compared to the other processes
(Vionnet et al., 2013).

The saltation of grains along the surface accounts for about 75% of all particle movement by
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wind (Bagnold, 1941). In our OpenFOAM model, both the suspension and saltation modes are
represented but saltation stays predominant. Most saltating particles are confined to a thin layer
close to the surface (~10 cm), which we refer to as the saltation layer. When aloft, saltating
particles are accelerated by the fluid flow: their kinetic energy is partly dissipated as friction
losses, partly sustained to start a new ballistic trajectory and partly transferred to eject other
grains from the snowbed surface. A total of three saltation modes are commonly identified
(Figure 1): aerodynamic entrainment, rebound and ejection. Aerodynamic entrainment (or
lift) occurs when particles initially at the surface are lifted up by aerodynamic forces only.
Rebound happens when particles bounce to a new ballistic trajectory after hitting the ground.
Ejection (or splash) occurs when particles laying in the ground are set in motion due to the
impact of saltating particles (Doorschot and Lehning, 2002). These transport modes are in
fact modes of saltation initiation, which have a great impact on the ballistic trajectory of the
particle. Different authors contributed to the physical understanding of these saltation modes
and developed parametrizations of the wind-particle-bed interaction. We particularly refer to
Comola and Lehning (2017) whose findings were implemented in the snow transport solver

described herein.

Wind
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Aerodynamic entrainment Rebound Ejection (splash) |

Figure 1: The three main particle saltation modes: aerodynamic entrainment, rebound and ejection. Adapted from
Brito Melo (2019).

Based on several wind tunnel experiments with sand of uniform grain size that he conducted,
Bagnold (1941) could establish the concept of fluid threshold which is the wind speed necessary
for grains to start saltating when initially at rest. This threshold value varies in direct proportion
to the predominant grain size of the sand surface. Thus, saltation starts when the shear stress
exceeds the fluid threshold: this is an important concept for the build-up of our snow movement

model. All the related mathematical expressions are detailed in the next subsection.
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2.2 Governing equations for snow surface-flow interaction

The underlying principles and equations of the OpenFOAM snow transport model are described
here. They are similar to those of the Large Eddy Simulation-Lagrangian Stochastic Model
(LES-LSM) developed within the CRYOS laboratory at EPFL (CRYOS, 2021). We refer to
the work of Comola and Lehning (2017) and Sharma et al. (2018) for more details. The three
saltation modes - aerodynamic lift, rebounding and ejection of grains - are represented in the

model under a mathematical form and implemented in the scripts in such manner.

2.2.1 Aerodynamic entrainment

Grains lying on the snow bed can be entrained into the saltation layer when the fluid surface
shear stress 7y s, is large enough to lift them up, namely when it exceeds the fluid threshold
value 7, defined as (Bagnold, 1941)

Tth = A29<dp> (Pp - pf) (1)

where (d,) is the mean particle diameter, p, and p; are the particle and fluid densities,
respectively and A is an empirical constant taken equal to 0.2 for snow as determined by Clifton
et al. (2006) through wind-tunnel experiments. ¢ refers to the gravitational acceleration and is

assumed to be equal to 9.81 m/s?.

Two different formulations for surface shear stress were implemented in the OpenFOAM

aerodynamic lift submodel. The first one is is obtained by applying the logarithmic law of the

wall (LOW),
2
LOW Glen
_ e 2
Thaurt = 1 <m<z/zo>) @

where U, is the tangential velocity vector, z the height of the first grid cell center, z; the
aerodynamic roughness length and « = 0.41 the von Kdrman constant. The second expression

is based on the vertical velocity gradient and the total kinematic viscosity:

ou
TKV
7—f,surf = pPr (& (Vt + V)> (3)
z=0
where g—;ﬂzzo is the vertical velocity gradient and v, v; the viscous and turbulent kinematic
viscosity, respectively. This method has the advantage to be universal and independent of

the wall function employed in the simulations. In each grid cell, the number of particles
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aerodynamically entrained by the fluid at each timestep, V., linearly increases with the excess

shear stress according to the formulation of Anderson and Haff (1991):

Ce
Noe = — (T surf — AxAyAt 4
87r(dp)2(7f’ £ — Tin) AzAy 4)
where C. is an empirical parameter set to 1.5 (Doorschot and Lehning, 2002), Ax and Ay are the
grid dimensions in the streamwise/spanwise directions and At is the simulation timestep. Once
that IV, is determined, particles are launched at height h;,,;; = 4(d,,) and the particle diameter,
initial velocity magnitude and ejection angle are all sampled from statistical distributions

according to Clifton and Lehning (2008). More details can be found in their work.

2.2.2 Rebound and splash entrainment

Depending on its path, a snow particle present in the fluid might hit the surface upon which it can
not only rebound -defined as rebound entrainment- but also eject other particles from the bed
to the overlying fluid, defined as splash entrainment. The probability P, that the snow particle
rebounds when impacting the bed is given by Anderson and Haff (1991) as follows

P, =P,(1—e ") (&)

where P, is the maximum probability equal to 0.9 for snow (Groot Zwaaftink et al., 2013), v
is an empirical constant equal to 2, and v; is the velocity magnitude of the impacting particle.
When rebounding, the particle is assumed to have a velocity magnitude of v,, = 0.5v; (Doorschot
and Lehning, 2002) and the rebound angle is determined from a statistical distribution according
to Kok and Renno6 (2009).

Concerning the splash entrainment, the number of particles ejected from the bed Ny 0 is
defined as the minimum between Ny and N, whose expressions are (Comola and Lehning,
2017):

1— P —€g,r d?v?
Np = : 1) (©)

200)((d) + 74)° (147, 5L+ ()77 = 5) +22

R

(1= Popy — pipr)d3vicosay;

= ()2((d) + %)3 ((cosa)(cosﬁ}rM\/[l + (U_d>)2]9 _ 1)

(7

—~
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Ny; and Ng are the number of ejections predicted by the momentum and energy balance,
respectively. In Eq.6, €7, and ¢, are the fractions of impact energy lost to the bed and kept
by the rebounding particle, respectively. 1, and p, are their equivalent for momentum in Eq.7.
(d) and o4 are the mean and standard deviation of the ejecta’s diameter, (v) its mean velocity
and « and f the horizontal and vertical ejection angles. ¢ is the cohesive bond exerted on a
particle by its neighboring particles. ), and rg are correlation coefficients linking mass and
velocity. More details about the derivation of these expressions can be found in the work of
Comola and Lehning (2017). Similarly to the aerodynamic entrainment, the characteristics of
the splashed particles are randomly sampled from statistical distributions. Overall, details about
the equations of the surface-flow interaction can be found in the Supplementary Materials of the

work from Sharma et al. (2018).

3 Implementation of a snow transport model

From this section on, several fonts are employed: the OpenFOAM font refers to the solver and
function names of the software; the command font is employed when referring to a terminal

command and directory/file names.

The existing OpenFOAM solver DPMFoam is employed for the implementation of this new
snow transport model. It employs the lagrangian library of the software which compiles a
variety of Lagrangian particle tracking (LPT) libraries. DPMFoam is a multiphase flow solver
that handles the coupled Eulerian—Lagrangian phases and involves a finite number of particles
spread in a continuous phase. The motion of individual particles is obtained directly by solving
Newton’s second law of motion, which corresponds to the so-called discrete particle method
(DPM). Particles are aggregated in clouds and treated as one big computational parcel, where
the effect of the volume fraction of particles on the continuous phase is included within the
Eulerian continuum equations. Details on the numerical approach employed in DPMFoam are

given in Fernandes et al. (2018), along with validation results.

Overall, the following steps must be performed for the build-up of a snow transport model:

1. The implementation of the aerodynamic entrainment equations (Sect.2.2.1) using the

stochasticCollision submodel as a base;

2. The implementation of the rebound and splash entrainment modes (Sect.2.2.2) based on

the patch-interaction submodel locallnteraction;

6
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3. The integration of a source term in the Eulerian momentum equations in the form of a

large-scale pressure gradient;

4. The set-up of an initial velocity profile following the logarithmic law to reach faster
convergence. Addition of an extra term for random noise is also made possible in order to

mimic the effect of turbulence.

5. The addition of so-called volScalarField objects for the visualization of particle deposition

and entrainment as well as surface friction velocity at the surface.

The main implementation steps mentioned above are described in details in the following
sections. The first step consists in copying into the user folder ($WM_PROJECT_USER_DIR)
the intermediate and distributionModels directories from the lagrangian library located in the

OpenFOAM source libraries directory ($FOAM_SRC) through the following command:
cp -r $FOAM_SRC/lagrangian/intermediate \
$WM_PROJECT_USER_DIR/src/lagrangianCRYOS/intermediateCRYOS/
Comparably for the distributionModels library:
cp -r $FOAM_SRC/lagrangian/distributionModels \
$WM_PROJECT_USER_DIR/src/lagrangianCRY0S/distributionModelsTriple/

It is important that the folders copied in the user folder are named differently than the original
ones to avoid compiling issues: here the names lagrangianCRY0S, intermediateCRYOS and
distributionModelsTriple can be replaced by any other meaningful terms. Once that the
folders are set, the name changes need to be taken into account for the compilation of the
modified libraries. At the last line of the file Make/files in the respective folders, replace the
$ (FOAM_LIBBIN) expression by $ (FOAM_USER_LIBBIN) and add the name of the new library:

LIB = $(FOAM_USER_LIBBIN)/liblagrangianIntermediateCRYOS
LIB = $(FOAM_USER_LIBBIN)/libdistributionModelTriple

Similarly, the DPMFoam solver folder must be copied from the OpenFOAM applications
directory ($FOAM_APP) via the command:

cp -r $FOAM_APP/solvers/lagrangian/DPMFoam \
$WM_PROJECT_USER_DIR/applications/solvers/snowDPMFoam
Rename the DPMFoam.C file to snowBedFoam.C. In order to be able to compile

the new application, the files must be modified in the Make directories. = Change

7
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snowDPMFoam/Make/files to
DPMNewFoam.C
EXE = $(FOAM_USER_APPBIN) /snowBedFoam
and snowDPMFoam/DPMTurbulenceModels/Make/files to
DPMTurbulenceModels.C
LIB = $(FOAM_USER_LIBBIN)/1ibDPMTurbulenceModelsNew

The implementation stages described hereafter must be carried out in the user folder: by
principle, the original OpenFOAM files in $FOAM_SRC should never be modified to ensure the

correct operation of the software.

3.1 Particle statistical distribution models

Before the implementation of the snow transport equations, a new class must be created to
integrate the different types of statistical distribution used for the sampling of the dimension,
ejection angle and velocity of the particles (described in details in section S1.4. of Sharma
et al. (2018), Supplementary Materials). This was achieved by using the OpenFOAM class
distributionModels as a template. A total of three different statistical distributions are considered,
namely: exponential, log-normal and normal. The subsequent step-by-step approach must be

followed for their implementation:

1. In the distributionModelsTriple directory that was just created in the user folder,
delete all the subdirectories except for the ones named distributionModel and

exponential. The Make folder should also remain as it is essential for compilation;

2. Replace the term ‘"distributionModel(s)" by "distributionModel(s)Triple" and
"exponential" by "normalLogNormalExponential" in all the files and folders containing

these instances;

3. In the file distributionModelTriple.C, delete the content of the
Foam::distributionModels::distributionModel::check() Protected Member Function
and replace the existing Member Functions by normalSample(), logNormalSample()
and exponentialSample(). These functions should also be defined in
distributionModelTriple.H, while the ones that were replaced should be removed.
No changes should be brought to distributionModelTripleNew.C, except for the

name as specified in the first step.
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4. In the normalLogNormalExponential.H file, delete the lines found under the Private
Data and Member Functions sections and add the definition of the normalSample,

logNormalSample and exponentialSample functions;

5. In the normalLogNormalExponential.C file, add the mathematical expressions related
to the three statistical distribution Member Functions used for the sampling of particle

properties. In the Constructors section, keep only the distributionModelTriple (p) variable.

Figures 2-3 and 4-5 show the OpenFOAM x.H and *.C scripts for the new
normalLogNormalExponential class, respectively. The equations corresponding to the statistical
distributions are in Figure 5. As a final step, add the following line in the Make/options file of

the intermediateCRYOS folder, after the expression EXE_INC = \:
-I../distributionModelsTriple/InInclude \
In the same file, add the following after the line containing LIB_LIBS = \:

-L$ (FOAM_USER_LIBBIN) \
-ldistributionModelTriple

These steps are needed for the correct compilation of the new class.
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ONOUTA WN =

/* ___________________________________________________________________________ *\
R — |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam: :normalLogNormalExponential

Description
normalLogNormalExponential distribution model

SourceFiles
normalLogNormalExponential.C

#ifndef normalLogNormalExponential H
#define normalLogNormalExponential H

#include "distributionModelTriple.H"

namespace Foam

{

namespace distributionModelsTriple

{

/* ___________________________________________________________________________ *\
Class normalLogNormalExponential Declaration

\* ___________________________________________________________________________ */

class normalLogNormalExponential

public distributionModelTriple
{

public:

Figure 2: normalLogNormalExponential.H, lines 1 to 57.
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58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

//- Runtime type information
TypeName("normalLogNormalExponential™);
// Constructors

//- Construct from components
normalLogNormalExponential(const dictionary& dict, cachedRandom& rndGen);

//- Construct copy
normalLogNormalExponential (const normalLogNormalExponential& p);

//- Construct and return a clone

virtual autoPtr<distributionModelTriple> clone() const

{
return autoPtr<distributionModelTriple>(new
normalLogNormalExponential(*this));

//- Destructor
virtual ~normalLogNormalExponential();
// Member Functions

//- Sample the normal distribution model
virtual scalar normalSample(scalar mean , scalar std ) const;

//- Sample the lognormal distribution model
virtual scalar logNormalSample(scalar mean , scalar std ) const;

//- Sample the exponential distribution model
virtual scalar exponentialSample(scalar mean , scalar std ) const;

// k* sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k X >k >k % k >k % >k % X >k % X k >k X //

} // End namespace distributionModelsTriple
} // End namespace Foam

// k* ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k >k k k >k X //

#endif

// >k 3k 3k ok sk >k >k 3k Sk ok sk sk >k sk Sk ok sk sk >k sk Sk ok sk sk >k sk Sk sk ok sk >k 3k Sk ok ok sk sk sk Sk ok ke sk sk sk sk sk ok sk >k >k 3k Sk ok sk >k >k sk ok ok ok sk >k sk sk ok ok sk >k sk ok ok ok ok //

Figure 3: normalLogNormalExponential.H, lines 58 to 105.
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ONOUTA WN =

/* ___________________________________________________________________________ *\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

#include "normallLogNormalExponential.H"
#include "addToRunTimeSelectionTable.H"
#include "mathematicalConstants.H"

// * ok ok ok ok ok ok ok ok ok X x % *x Gtgtjic Data Members * * x ok >k k %k % x *x *x *x X% //

namespace Foam

{
namespace distributionModelsTriple
{
defineTypeNameAndDebug (normalLogNormalExponential, 0);
addToRunTimeSelectionTable(distributionModelTriple,
normalLogNormalExponential, dictionary);
}
}

// ok ok ok ok ok ok ok ox ok ok x X k% *x X (Constructors k sk ok ok ok ok ok ok ok Xk k >k X Xk //

Foam: :distributionModelsTriple: :normalLogNormalExponential: :normalLogNormalExponentid

al
(

const dictionary& dict,
cachedRandom& rndGen

distributionModelTriple(typeName, dict, rndGen)

check();

Foam: :distributionModelsTriple: :normalLogNormalExponential: :normalLogNormalExponentid

Figure 4: normalLogNormalExponential.C, lines 1 to 55.
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al(const normalLogNormalExponential& p)

56 :

57 distributionModelTriple(p)

58 | {}

59

60

61 //****************Destructor ***************//

62

63 | Foam::distributionModelsTriple::normalLogNormalExponential: :~normalLogNormalExponent3a
ial()

64 | {}

65

66

67 //***************MemberFunctions *************//

68

69 | Foam::scalar P3|
Foam: :distributionModelsTriple: :normalLogNormalExponential::normalSample(scalar d
mean_, scalar std ) const

70 | {

71 scalar randl=rndGen_.sample@l<scalar>();

72 scalar rand2=rndGen_.sampleOl<scalar>();

73 randl=min(rand1+RO0TVSMALL,1.0);

74 scalar 2

val=mean +std *sqrt(-2.0*log(randl))*cos(2.0*constant::mathematical::pi*rand2);

75 return val;

76 | }

77

78 | Foam::scalar 4
Foam: :distributionModelsTriple: :normalLogNormalExponential::logNormalSample(scalar 3
mean_, scalar std ) const

79 | {

80 scalar s2 = log(1l.0+pow(std /mean ,2.0));

81 scalar m = log(mean_) - 0.5%s2;

82 scalar randl=rndGen_.sampleOl<scalar>();

83 scalar rand2=rndGen_.sample@l<scalar>();

84 randl=min(rand1+RO0OTVSMALL,1.0);

85 scalar P3|

val=m+sqrt(s2)*sqrt(-2.0*log(randl))*cos(2.0*constant: :mathematical::pi*rand2);

86 val=exp(val);

87 return val;

88| }

89 | Foam::scalar 2
Foam: :distributionModelsTriple: :normalLogNormalExponential: :exponentialSample(scalarad
mean_, scalar std ) const

920 | {

91 scalar randl=rndGen_.sampleOl<scalar>();

92 randl=min(randl,1.0-RO0OTVSMALL);

93 scalar val = -mean_*log(l.0-randl);

94 return val;

95 | }

Figure 5: normalLogNormalExponential.C, lines 56 to 96.

3.2 Submodel 1: aerodynamic entrainment
3.2.1 Copying the model template

The first step in the implementation of the aerodynamic lift submodel is to copy the

stochasticCollision template directory found at:

13
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$WM_PROJECT_USER_DIR/src/lagrangianCRYOS/intermediateCRY0OS/submodels/. ..

Kinematic/StochasticCollision

Once this is done, follow the steps:

1. Rename the copied directory BedAerodynamicLiftInjectionModel;

2. Rename the StochasticCollisionModel subfolder by
BedAerodynamicLiftInjectionModel. Do the same for all the files located inside.

This will be the template of the class that was newly created;

3. Rename the NoStochasticCollision folder as well as all the files it contains by

NoBedAerodynamicLiftInjection;

N

. Inside all the files that were renamed in steps 2 and 3, replace the instances of the term

"StochasticCollision" by the term "BedAerodynamicLiftInjection".

5. Create a copy of the new BedAerodynamicLiftInjectionModel subfolder and
rename it LogLawShearStress. Inside the latter, replace every instance of the word
"StochasticCollisionModel" by "Logl.awShearStress" in the *.C and *.H files. It is
in these scripts that the mathematical base for the aerodynamic lift model will be

implemented;

At this stage, in the folder located at the path

$WM_PROJECT_USER_DIR/src/lagrangianCRY0S/intermediateCRY0S/submodels/. ..

Kinematic/BedAerodynamicLiftInjectionModel

You should have the list of directories shown in Figure 6.

Mame

[ BedAerodynamicLiftinjectionModel
& LogLawShearStress
[ NoBedAerodynamicLiftinjection

Figure 6: Content of the BedAerodynamicLiftInjectionModel directory.

14
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3.2.2 Description of the functions

The actual implementation of the aerodynamic entrainment equations can be performed
now. Within the files of the three classes that were just created (LoglLawShearStress -
NoBedAerodynamicLiftinjection - BedAerodynamicLiftInjectionModel), replace the last term of

the function
Foam::ClassName< CloudType>::collide(const scalar dt)

by bedAeroLiftInject(). This new function constitutes the base for the implementation of the
aerodynamic entrainment equations within the LoglawShearStress class. No other change
should be brought to BedAerodynamicLiftinjectionModel and NoBedAerodynamicLiftInjection.
In the LogLawShearStress directory, simultaneously open the LogLawShearStress.H and
LogLawShearStress.C files. In the new bedAeroLiftinject() function, erase all the lines
that were related to the original collide function. Table 1 summarizes the Protected Member

Functions involved in the Logl awShearStress model and their utility.

Function Utility

Main routine of the script. For every cell, the surface
bedAeroLiftInject shear stress is computed and the number of lifted particles

determined accordingly.

Accounts for the vertical shift of the lifted particles and adds
normallnject
them in the domain (see Sharma et al. (2018), section S1.4.).

Table 1: Functions implemented in the aerodynamic entrainment model and their utility.

Linking the mathematical expressions from Section 2 to their corresponding segments of the
code, the shear stress threshold (Eq.1) is implemented within the bedAeroLiftInject function at
line /317 (Fig.12). The shear stress found at the surface can be computed in two ways (to be
specified by the user in the kinematicCloudProperties file of the case directory), either by
applying the logarithmic law (Eq.2 - line /24, Fig.12) or via the modelled turbulent kinematic
viscosity (Eq.3 - line /28, Fig.12). The difference between the threshold and actual surface shear
stress is used to determine the number of aerodynamically lifted particles NV, at line /35 (Eq.4
- Fig.12). From line /41 on, the code is related to the random sampling of the particle properties

as well as to the injection of particles through the call of the respective functions (Table 1).

15



Implementation of a snow transport model in OpenFOAM

3.2.3 OpenFOAM scripts

The scripts related to our BedAerodynamicLiftlnjectionModel Lagrangian submodel and more
especially to the LoglawShearStress class are given below. Figures 7 to 9 present extracts
from the LogLawShearStress.H file which contain data types and function definitions. The
commented lines briefly describe the variables that are employed in the model. Figures 10 to 16
constitute the parts of the LogLawShearStress.C script where the equations for aerodynamic

lift were included.
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LCoOoNOOULE WN -

/* ___________________________________________________________________________ *\
R —
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam: :LogLawShearStress

Description
Aerodynamic entrainment of bed particles

#ifndef LogLawShearStress H
#define LoglLawShearStress H

#include "BedAerodynamicLiftInjectionModel.H"

namespace Foam

{

/* ___________________________________________________________________________ *\
Class LogLawShearStress Declaration

\* ___________________________________________________________________________ */

template<class CloudType>
class LogLawShearStress

public BedAerodynamicLiftInjectionModel<CloudType>
// Private Data

//- Mean particle diameter
scalar dm_;

//- Minimum number of particles per parcel
scalar pppMin_;

Figure 7: LogLawShearStress.H, lines 1 to 57.
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58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

99
100
101
102
103
104

105
106

107
108
109
110
111

//- Std deviation of particle diameter
scalar ds_;

//- Std deviation of particle diameter
scalar d_max_;

//- Std deviation of particle diameter
scalar d_min_;

//- Aerodynamic roughness length
scalar z0_;

//Start of Activation (launch of saltation)
scalar SOA_;

//A constant for shear stress threshold computation
scalar Acst_;

//- Number of parcels aerodynamically lifted
volScalarField nAerolLift ;

//- Patch name
const word patchName ;

//- Flag to compute surface shear stress with log-law
Switch taulLoglLaw_;

//- Patch ID
const label patchld ;

protected:

// Protected Data

//- Convenience typedef to the cloud's parcel type
typedef typename CloudType::parcelType parcelType;

//- Parcel size distribution model
const autoPtr<distributionModelsTriple::distributionModelTriple>
sizeDistributionTriple_;

// Protected Member Functions

public:

//- Main aerodynamic entrainment routine

virtual void bedAeroLiftInject();

void normalInject(const vector& U NewP, const vector& coorf, const vector&
coorfr, const scalar& d g, const scalar& nParticle);

//- Aerodynamically lifted parcel type label - id assigned to identify
parcel for

// post-processing.
label aeroLiftParcelType ;

Figure 8: LogLawShearStress.H, lines 58 to 111.
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112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

//- Runtime type information
TypeName ( );

// Constructors

//- Construct from dictionary
LogLawShearStress
(
const dictionary& dict,
CloudType& cloud,
const word& modelName = typeName
)

//- Construct copy
LogLawShearStress (LogLawShearStress<CloudType>& cm);

//- Construct and return a clone
virtual autoPtr<BedAerodynamicLiftInjectionModel<CloudType> > clone() //const

{

return autoPtr<BedAerodynamicLiftInjectionModel<CloudType> >

(
new LogLawShearStress<CloudType>(*this)

);

//- Destructor
virtual ~LogLawShearStress();

// Member Functions

+

// * ok ckok ok ockok ok ok ok ok ok ok ok ook ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok X //

} // End namespace Foam

// k) ok ok ok ok ok x >k X% k X %k X %k X% %k X %k X %k X %k X %k X %k X %k X % X % X %k X % X //
#ifdef NoRepository

# include
#endif

// * ok ckok ok ockok ok ockok ok ok ok ok ook ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok X //

#endif

// Sk ok ok ok >k >k 3k 3k ok ok ok ok >k >k 3k 3k Sk ok ok sk >k >k 3k 3k Sk ok sk ok >k >k ok Sk ok ok sk ok >k >k 3k Sk ok k ok >k >k 3k 3k Sk ok ok sk ok >k 3k Sk Sk ok ok ok ok >k >k Sk ok ok ok ok >k >k sk kokok //

Figure 9: LogLawShearStress.H, lines 112 to 161.
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LCoOoNOOULE WN -

/* ...........................................................................
R —
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

#include "LoglLawShearStress.H"
#include "mathematicalConstants.H"
#include "meshTools.H"

#include "polyMeshTetDecomposition.H"
#include "turbulenceModel.H"

using namespace Foam::constant::mathematical;

J/ * Kk ok ok ok ox ok kox ok ok % Protected Member Functions ok ok ok ok ok ok ox ok ookox
template<class CloudType>
void Foam::LogLawShearStress<CloudType>: :bedAeroLiftInject()
{
const fvMesh& mesh = this->owner().mesh();
if(mesh.time().value() < SOA )
{
// not in the time range: go back
return;

}
IIT171777777777777777777777777777777777777777777777777777777777777177777

const volVectorField& U = this->owner().U();
const volScalarField& rho = this->owner().rho();

/////////////// SHEAR STRESS COMPUTATION: GENERAL METHOD
const objectRegistry& obr = this->owner().mesh();
const turbulenceModel& turbModel =obr.lookupObject<turbulenceModel>

(
IOobject: :groupName

(
turbulenceModel: :propertiesName,
this->owner().U().group()

Figure 10: LogLawShearStress.C, lines 1 to 57.
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58 )

59 )

60 volScalarField nuEff(turbModel.nuEff())

61

62 volScalarField uFric

63 (

64 IOobject

65 (

66 ,

67 this->owner().db().time().timeName(),

68 this->owner().mesh(),

69 IOobject::NO READ,

70 IOobject::NO WRITE

71 )

72 this->owner().mesh(),

73 dimensionedScalar( , dimVelocity, 0.0)

74 );

75

76 uFric.boundaryField()[patchId ] =

77 sqrt

78 (

79 nuEff.boundaryField() [patchId ]

80 *mag (U.boundaryField() [patchId ].snGrad())

81 )

82 const scalarField& uFp = uFric.boundaryField()[patchId ];

83 const scalarField& y = turbModel.y()[patchId ];

84 const fvPatchVectorField& Uw = turbModel.U().boundaryField()[patchId ];

85 const scalarField magUp(mag(Uw.patchInternalField() - Uw));

86

87 [11777777777777777777777777777777777777777777777777777777777777777777777

88

89

90 //To access the mesh information for the boundary at target patch patchId

91 const polyPatch& cPatch = mesh.boundaryMesh()[patchId 1;

92

93 //List of cells close to a boundary

94 const labelUList& faceCells = cPatch.faceCells();

95

96 forAll(faceCells, facel)

97 {//1

98 label cellInd = faceCells[facell;

99

100 //COMPUTE SURFACE SHEAR STRESS FROM EULERIAN GRID FOR A GIVEN CELL

101 vector coorC = mesh.C()[cellInd];

102 vector coorf = mesh.Cf().boundaryField()[patchId ][facel];

103

104 const vector UCell=U[cellInd];

105 const scalar rhoCell=rho[cellInd];

106

107 vector n = 4
-mesh.Sf().boundaryField()[patchId ][faceI]/mesh.magSf().boundaryField()[patch a
Id ][facell;

108 vector Un = (UCell & n)*n;

109

110 vector Utl = UCell - Un;

111 vector tl1 = Utl/mag(Utl);

112

Figure 11: LogLawShearStress.C, lines 58 to 112.
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113
114
115
116
117
118

119
120
121
122
123
124

125
126
127
128

129
130
131

132
133
134
135

136
137
138
139
140
141
142
143

144

145
146
147
148
149
150
151
152
153
154
155
156

vector t2 = t1”n; //... normal to impacting plane

scalar cellCentreDistanceToWall = mag((coorC-coorf) & n);

// OPTIONS FOR SHEAR STRESS COMPUTATION:

scalar oldMassCheckPatterns =
this->owner().massCheckPatterns().oldTime().boundaryField()[patchId ][facell;

scalar tauSurface;

if(tauLoglLaw )

{
tauSurface =
rhoCell*pow((0.41*mag(Utl)/(log(cellCentreDistanceToWall/z0 ))),2);
//log law method, z corresponds to height at center of the face

}

else

{
tauSurface = rhoCell*pow(uFp[faceI],2); //To estimate the shear stress
as the main method consistent with all the wall function used for
nut

}

scalar tauThresh =

(Acst *Acst )*9.81*dm *(this->owner().constProps().rho@()-rhoCell); //Shear
Stress Threshold (Bagnold).

scalar tauExcess = max(0.0, (tauSurface-tauThresh));

scalar cellArea = mesh.magSf().boundaryField()[patchId ][facell;

scalar nEntrain =

1.5*tauExcess/(8.0*constant: :mathematical::pi*pow(dm ,2.0)); //Sharma's
paper, p.3 - Nae variable
nEntrain=nEntrain*cellArea*this->owner().db().time().deltaTVvalue();

nAeroLift .boundaryField()[patchId ][faceIl] += nEntrain;
scalar entrainment = nAeroLift .boundaryField()[patchId ][facell;

if(entrainment>pppMin )
{772
scalar tempMass =

4

entrainment*this->owner().constProps().rho0()*constant::mathematical::pi*p @

ow(dm ,3.0)/6.0;
scalar depMass =

4

(this->owner().massDeposition().boundaryField()[patchId ][faceI])*cellArea a

’

if (tempMass>depMass)

{
}

tempMass=depMass;

if(tempMass>0) //If there is still mass to lift up.
{773
scalar h_ang = 0.0;

scalar d g = sizeDistributionTriple ->logNormalSample(dm ,ds );
d g = min(d_max_,max(d g,d min ));

Figure 12: LogLawShearStress.C, lines 113 to 156.
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157
158

159
160

161
162
163
164
165
166

167
168
169
170
171

172
173
174
175
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192

193

194
195
196
197
198

199
200
201

Y/ /1

scalar mass g
=this->owner().constProps().rhoO()*constant::mathematical::pi*pow(d g,
3)/6.0;

scalar entrainmentModified=tempMass/mass g;

label npl = label(entrainmentModified/pppMin_)+1; //This is because 3
last parcel won't be filled up to maximum.

Al A

scalar slope = 0.0;
for(label ipl=1; ipl<=npl; ipl++)

{774
scalar nParticle=pppMin_;
if(ipl==npl) //If the number of parcels is not the last one, a
which might not be completely full
{
nParticle=entrainmentModified- (npl-1)*pppMin_;
}
scalar mean = a
(75.0-55.0*%(1.0-exp(-d g/(175e-6))))/180.0*constant: :mathematical: @
1pi;

scalar std = 15.0/180.0*constant: :mathematical::pi;

//Vertical angle

scalar v_ang = sizeDistributionTriple ->logNormalSample(mean,std);
v_ang = min(constant::mathematical: :piByTwo, d
max(-constant::mathematical: :piByTwo, v_ang+slope));

scalar vel fric = sqrt(tauSurface/rhoCell);
mean = 3.5*vel fric;
std = 2.5*%vel_fric;

scalar e vel = sizeDistributionTriple ->logNormalSample(mean,std);

vector Un NewP = (e vel*sin(v_ang))*n;

vector Utl NewP = (e vel*cos(v_ang)*cos(h_ang))*tl;
vector Ut2 NewP = (e vel*cos(v_ang)*sin(h _ang))*t2;
vector U_NewP = Un_NewP+Utl_NewP+Ut2_NewP;

normalInject(U NewP,coorC,coorf+(4.0*dm )*n, d g, nParticle);

}//4
this->owner().massDeposition().boundaryField()[patchId ][facel] -= a
tempMass/cellArea;
this->owner().massCheckPatterns().boundaryField()[patchId ][faceI] Pl
-= tempMass/cellArea;
this->owner().surfaceUfric().boundaryField() [patchId ]1[facel] = a
uFp[facell;
¥//3

nAeroLift .boundaryField()[patchId ][faceI] = 0.0;

¥/ /2

this->owner().massDepRate().boundaryField()[patchId ][facel] = a

((this->owner().massCheckPatterns().boundaryField()[patchId ][facel])-oldMassC @
heckPatterns)/(this->owner().db().time().deltaTvalue());

Figure 13: LogLawShearStress.C, lines 157 to 201.
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202 | template<class CloudType>
203 | void Foam::LogLawShearStress<CloudType>::normalInject(const vector& U NewP, const
vector& coorf, const vector& coorfr, const scalar& d g, const scalar& nParticle)

204 | {

205 label celll = -1;

206 label tetFacel = -1;

207 label tetPtI = -1;

208 vector pos = coorf;

209 label posInList = -1;

210 this->owner().mesh().findCellFacePt

211 (

212 pos,

213 celll,

214 tetFacel,

215 tetPtI

216 )

217

218 if (celll > -1)

219 {

220 parcelType* pPtr = new parcelType(this->owner().mesh(), coorfr, celll,
tetFacel, tetPtI);

221

222 //Check/set new parcel thermo properties

223 this->owner().setParcelThermoProperties (*pPtr, 0.0);

224

225 pPtr->d()=d g; //assigning the diameter, same for all particles in the parcel

226

227 //Check/set new parcel injection properties

228 this->owner().checkParcelProperties(*pPtr,
this->owner().mesh().time().deltaTValue(), false);

229 pPtr->nParticle()=nParticle;

230

231 pPtr->U()=U_NewP; //assigning the ejection linear velocity

232 pPtr->typeld() = aeroLiftParcelType ;

233

234 // Apply corrections to position for 2-D cases

235 meshTools::constrainToMeshCentre(this->owner().mesh(), pPtr->position());

236

237 // Apply correction to velocity for 2-D cases

238 meshTools::constrainDirection

239 (

240 this->owner().mesh(),

241 this->owner().mesh().solutionD(),

242 pPtr->U()

243 )

244

245 this->owner().addParticle(pPtr);

246 }

247 else

248 {

249 Info <<
<< coorf << << celll << << tetFacel << << tetPtI << endl;

250 }

251 | }

252

253 //****************constructors **************//

254

Figure 14: LogLawShearStress.C, lines 202 to 254.
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255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

template<class CloudType>
Foam: : LogLawShearStress<CloudType>: :LogLawShearStress
(

const dictionary& dict,

CloudType& owner,

const word& modelName

BedAerodynamicLiftInjectionModel<CloudType>(dict, owner, modelName),
dm (0.0),
ds (0.0),
pppMin_(0.0),
d max (0.0),
d_min_(0.0),
z0 (0.0),
SOA (0.0),
Acst (0.0),
aeroLiftParcelType
(
this->coeffDict().lookupOrDefault( , 2)
)
nAeroLift
(
IOobject
(
this->owner().name() + ’
this->owner().db().time().timeName(),
this->owner().mesh(),
IOobject::READ IF PRESENT,
IOobject::NO WRITE
),
this->owner().mesh(),
dimensionedScalar( , dimless, 0.0), //Number of particles already
entrained
zeroGradientFvPatchScalarField: :typeName //For post-processing purposes
)
sizeDistributionTriple_
(
distributionModelsTriple::distributionModelTriple: :New
(
this->coeffDict().subDict( ),
this->owner().rndGen()
)
)I
patchName (this->coeffDict().lookup( ),
tauLogLaw_(this->coeffDict().lookupOrDefault( , false)),
patchId (this->owner().mesh().boundaryMesh().findPatchID(patchName ))

if (patchId < 0)
{

FatalErrorIn

(

Figure 15: LogLawShearStress.C, lines 255 to 310.
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311

312 ) << << patchName_ << << nl
313 << << this->owner().mesh().boundaryMesh().names()
314 << nl << exit(FatalError);

315 }

316

317 dm = this->coeffDict().lookupOrDefault( , 0.00026);

318 ds = this->coeffDict().lookupOrDefault( , 0.00013);

319 pppMin = this->coeffDict().lookupOrDefault( , 1000);

320 d max = this->coeffDict().lookupOrDefault( , 0.002);

321 d min = this->coeffDict().lookupOrDefault( , 0.00005);

322 z0 = this->coeffDict().lookupOrDefault( ,0.0001);

323 SOA = this->coeffDict().lookupOrDefault( ,100.0) ;

324 Acst = this->coeffDict().lookupOrDefault( ,0.1);

325 | }

326

327

328 | template<class CloudType>
329 Foam: :LogLawShearStress<CloudType>: :LogLawShearStress

330 (

331 LogLawShearStress<CloudType>& cm

332 )

333 :

334 BedAerodynamicLiftInjectionModel<CloudType>(cm),
335 sizeDistributionTriple (cm.sizeDistributionTriple ().clone().ptr())
336 dm_(cm.dm ),

337 ds (cm.ds ),

338 pppMin_(cm.pppMin ),

339 d max_(cm.d max_ ),

340 d_min_(cm.d_min_),

341 z0 (cm.z0 ),

342 SOA (cm.SOA ),

343 Acst_(cm.Acst ),

344 aeroLiftParcelType (cm.aeroLiftParcelType ),

345 nAeroLift (cm.nAeroLift ),

346 patchName (cm.patchName ),

347 tauLogLaw (cm.taulLoglLaw ),

348 patchId (cm.patchld )

349 | {

350

351 }

352

353

354 //****************Destructor ***************//
355

356 | template<class CloudType>
357 | Foam::LoglLawShearStress<CloudType>: :~LogLawShearStress()

358 | {}

359

360

361 | // RRRRRRkokoRkokokoR ook Rk KRRk kKRR kKRR R R RRRRHRS R RR R R KK/
362

Figure 16: LogLawShearStress.C, lines 311 to 362.

3.2.4 Linking libraries

As a final step, the new BedAerodynamicLiftinjectionModel submodel needs to be linked
to the kinematicCloud and parcel classes for compilation purposes. To do so, go to the

KinematicCloud directory located at:
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$WM_PROJECT_USER_DIR/src/lagrangianCRYO0S/intermediateCRYOS/. ..

clouds/Templates/KinematicCloud

Inside  this directory, open the KinematicCloud.C, KinematicCloud.H and
KinematicCloudI.H files. There, search for the "stochasticCollision" term and copy each line
of code containing it, but with replacing every instance of it by "BedAerodynamicLiftInjection".
The new submodel also needs to be linked to the parcel object. Using the same first line than

the previous path, go to
...parcels/include

and create a file makeKinematicParcelBedAerodynamicLiftInjectionModels.H
similarly to the one related to the stochastic collision submodel, named

makeParcelStochasticCollisionModels.H.
Next, go to
...parcels/derived

and in the makeBasic*ParcelSubmodels. C files of each subfolder, add the reference to the *.H
file created above, just as the other submodels. Because the StochasticCollision model served
as a template for our aerodynamic lift model, they should appear in the exact same places:
this can provide guidance for adding the BedAerodynamicLiftinjectionModel submodel in the

appropriate files.

3.3 Submodel 2: rebound-splash entrainment
3.3.1 Copying the template

The first step in the implementation of the rebound-splash submodel is to make a copy of the

locallnteraction submodel located at the following path:

$WM_PROJECT_USER_DIR/src/lagrangianCRYOS/intermediateCRY0OS/submodels/. ..

Kinematic/PatchInteractionModel/LocalInteraction
Once the folder has been copied, follow the subsequent steps:
1. Rename the LocalInteractiondirectory by LocalInteractionReboundingSplashing;

2. In the the files contained within, replace every instance of the term "Locallnteraction"
by "LocallnteractionStickReboundSplash”, and the term "patchlnteraction" by
"patchlInteractionStickReboundSplash";
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3. In the file LocalInteractionStickReboundSplash.C, go to the correct() function
and copy the switch case called itRebound. Replace the term "itRebound" by
"itStickReboundSplash". It is in this case that the rebounding-splashing equations are

implemented.

Both the rebound and splash-related equations are included in this submodel.

3.3.2 Implementation of rebound equations

The first part of the implemented submodel is related to the rebounding of grains.
It is described in section S.1.4.2 from the work of Sharma et al. (2018) and relates
to the definition of the probability of rebound defined in Eq.5. It is implemented
at the beginning of the itStickReboundSplash case switch, at lines 372 - 339 of the
LocalInteractionStickReboundSplash.C file (see Fig. 25 and 26). The adopted approach
is that once a particle gets close to the boundary, a random number is generated and compared
to P,. If it is within the probability range, the particle is kept and assumed to rebound. If not, it

is removed from the numerical domain.

3.3.3 Implementation of splash equations

The second part of the submodel is related to the ejection (splashing) of grains due to the
effect of particles impacting the surface. It is implemented after the rebound of particles in
the itStickReboundSplash case, at lines 340 - 442. Line 358 (Fig.26) of the code refers to the
energy-related number of ejected particles Ng (Eq.6) while line 359 refers to the momentum-
related one, N, (Eq.7). Both of these equations are used to determine the number of splashed
particles (line 360). The lines located after relate to the random sampling of the particle

properties and the generation of parcels, until line 442 (Fig.28).

3.3.4 OpenFOAM scripts

Figures 17 to 19 display the content of the LocalInteractionStickReboundSplash.H file
which defines the data and functions used in the script. On the other hand, Figures 20 to 30
show the LocalInteractionStickReboundSplash.C script. The variables employed in the
code should also be added within the patchInteractionStickReboundSplashData. * files
(not displayed in this tutorial).
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ONOUTA WN =

/* ___________________________________________________________________________ *\
R — |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam: :LocalInteractionStickReboundSplash

Description
Patch interaction specified on a patch-by-patch basis

#ifndef LocalInteractionStickReboundSplash H
#define LocalInteractionStickReboundSplash H

#include "PatchInteractionModel.H"

#include "patchInteractionStickReboundSplashDatalist.H"
#include "Switch.H"

#include "distributionModelTriple.H"

#include "Random.H"

namespace Foam

{

/* ___________________________________________________________________________ *\
Class LocallnteractionStickReboundSplash Declaration

\* ___________________________________________________________________________ */

template<class CloudType>
class LocallnteractionStickReboundSplash

public PatchInteractionModel<CloudType>
// Private data

//- List of participating patches

Figure 17: LocalInteractionStickReboundSplash.H, lines 1 to 57.
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58 const patchInteractionStickReboundSplashDatalList patchData ;

59

60

61 // Counters for particle fates

62

63 //- Number of parcels escaped

64 List<label> nEscape_;

65

66 //- Mass of parcels escaped

67 List<scalar> massEscape_;

68

69 //- Number of parcels stuck to patches

70 List<label> nStick ;

71

72 //- Mass of parcels stuck to patches

73 List<scalar> massStick ;

74

75 //- Flag to output data as fields

76 Switch writeFields ;

77

78 //- Mass escape field

79 autoPtr<volScalarField> massEscapePtr_;

80

81 //- Mass stick field

82 autoPtr<volScalarField> massStickPtr_;

83

84 //- Mass deposition field

85 //autoPtr<volScalarField> massDepositionPtr ;

86

87 | protected:

88

89 //- Convenience typedef to the cloud's parcel type

90 typedef typename CloudType::parcelType parcelType;

91

92 //- Parcel size distribution model

93 const autoPtr<distributionModelsTriple::distributionModelTriple> a
sizeDistributionTriple ;

94

95 | public:

96

97 //- Runtime type information

98 TypeName ("1 teraction ( f );

99

100

101 // Constructors

102

103 //- Construct from dictionary

104 LocalInteractionStickReboundSplash(const dictionary& dict, CloudType& owner);

105

106 //- Construct copy from owner cloud and patch interaction model

107 LocalInteractionStickReboundSplash(const a
LocalInteractionStickReboundSplash<CloudType>& pim);

108

109 //- Construct and return a clone using supplied owner cloud

110 virtual autoPtr<PatchInteractionModel<CloudType> > clone() const

111 {

112 return autoPtr<PatchInteractionModel<CloudType> >

Figure 18: LocalInteractionStickReboundSplash.H, lines 58 to 112.
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(
new LocallInteractionStickReboundSplash<CloudType>(*this)

);

//- Destructor
virtual ~LocalInteractionStickReboundSplash();

// Member Functions

//- Return access to the massEscape field
volScalarField& massEscape();

//- Return access to the massStick field
volScalarField& massStick();

//- Return access to the massDeposition field
//volScalarField& massDeposition();

//- Apply velocity correction
// Returns true if particle remains in same cell
virtual bool correct
(
typename CloudType: :parcelType& p,
const polyPatch& pp,
bool& keepParticle,
const scalar trackFraction,
const tetIndices& tetls
)5

// I-0
//- Write patch interaction info to stream

virtual void info(Ostream& os);
};

// k* sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k ok ok >k >k X >k >k % k% >k % >k % X >k % X k >k X //

} // End namespace Foam

// k sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok % k >k % >k >k X %k % X k kx X //

#ifdef NoRepository
# include "LocalInteractionStickReboundSplash.C"
#endif

// ¥ ok ok okok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok //

#endif

// K 3Kk ok ok ok ok ok ok >k ok ok ok ok ok ok ok >k Sk ok ok ok ok ok ok ok >k ok ok ok ok ok ok ok >k sk ok ok ok ok ok ok ok sk sk ok ok 3k ok ok ok >k sk ok ok ok ok ok ok >k ok ok ok ok ok ok ok ok kokok ok k //

Figure 19: LocalInteractionStickReboundSplash.H, lines 113 to 166.
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ONOUTA WN =

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / 0 peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

#include "LocalInteractionStickReboundSplash.H"
#include "mathematicalConstants.H"
#include "meshTools.H"

/7

* ok ok ok ox ok ok ok ok ok X x *x *x * (Constructors * sk ok ok ok ok ok ok ok ok ok >k Xk >k >k //

template<class CloudType>

Foam: : LocalInteractionStickReboundSplash<CloudType>::LocalInteractionStickReboundSpla

ash

(

const dictionary& dict,
CloudType& cloud

PatchInteractionModel<CloudType>(dict, cloud, typeName),
patchData (cloud.mesh(), this->coeffDict()),
nEscape (patchData .size(), 0),
massEscape (patchData .size(), 0.0),
nStick (patchData .size(), 0),
massStick (patchData .size(), 0.0),
writeFields (this->coeffDict().lookupOrDefault("writeFields", true)),
massEscapePtr (NULL),
massStickPtr (NULL),
sizeDistributionTriple_
(
distributionModelsTriple: :distributionModelTriple: :New
(
this->coeffDict().subDict("sizeDistributionTriple"),
this->owner().rndGen()

Figure 20: LocalInteractionStickReboundSplash.C, lines 1 to 56.
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57 if (writeFields )

58 {

59 word massEscapeName(this->owner().name() + )

60 word massStickName(this->owner().name() + )

61 Info<< << massEscapeName <<

62 << << massStickName << endl;

63

64 (void)massEscape();

65 (void)massStick();

66 }

67 else

68 {

69 Info<< << endl;

70 }

71

72 // check that interactions are valid/specified

73 forAll(patchData , patchI)

74 {

75 const word& interactionTypeName =

76 patchData [patchI].interactionTypeName();

77 const typename PatchInteractionModel<CloudType>::interactionType& it =

78 this->wordToInteractionType(interactionTypeName);

79

80 if (it == PatchInteractionModel<CloudType>::itOther)

81 {

82 const word& patchName = patchData [patchI].patchName();

83 FatalErrorIn( d
)

84 <<

85 << interactionTypeName << << patchName

86 <<

87 << this->PatchInteractionModel<CloudType>::interactionTypeNames

88 << nl << exit(FatalError);

89 }

920 }

91| }

92

93

94 | template<class CloudType>

95 | Foam: :LocalInteractionStickReboundSplash<CloudType>::LocalInteractionStickReboundSpla

ash

96 (

97 const LocallInteractionStickReboundSplash<CloudType>& pim

98 | )

99 :

100 PatchInteractionModel<CloudType>(pim),

101 patchData (pim.patchData ),

102 nEscape (pim.nEscape ),

103 massEscape (pim.massEscape ),

104 nStick (pim.nStick ),

105 massStick (pim.massStick ),

106 writeFields (pim.writeFields ),

107 massEscapePtr (NULL),

108 massStickPtr (NULL),

109 sizeDistributionTriple (pim.sizeDistributionTriple ().clone().ptr())

110 | {}

111

Figure 21: LocalInteractionStickReboundSplash.C, lines 57 to 111.
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144
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153
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156
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164
165

// ok ok ok ok ok ok ok ox ok ok ok X k% % *x Daegtructor * sk ok ok ok ok % >k >k X %k >k X Xk X //

template<class CloudType>

Foam: : LocalInteractionStickReboundSplash<CloudType>::~LocalInteractionStickReboundSp3a
lash()

{}

// ok ok ok ok ok ok ok ox ok ok kX % Member Functions ¥ ok ok ok ok ok ok ok ok ok ok ok ok Xk //

template<class CloudType>

Foam: :volScalarField& a
Foam: : LocalInteractionStickReboundSplash<CloudType>::massEscape()

{

if (!massEscapePtr .valid())

{
const fvMesh& mesh = this->owner().mesh();
massEscapePtr .reset
(
new volScalarField
(
IOobject
(
this->owner().name() + ,
mesh.time().timeName(),
mesh,
I0object::READ IF PRESENT,
IOobject::AUTO WRITE
)
mesh,
dimensionedScalar( , dimMass, 0.0)
)
);
}

return massEscapePtr ();

template<class CloudType>
Foam: :volScalarField& a
Foam: : LocalInteractionStickReboundSplash<CloudType>::massStick()

{
if (!massStickPtr .valid())

{

const fvMesh& mesh = this->owner().mesh();

massStickPtr .reset

(

new volScalarField

(
I0object

(
this->owner().name() + ,
mesh.time().timeName(),

Figure 22: LocalInteractionStickReboundSplash.C, lines 112 to 165.
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199
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201
202
203
204
205
206
207
208
209
210
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222

mesh,
IOobject::READ IF PRESENT,
I0object::AUTO WRITE

)I

mesh,

dimensionedScalar( , dimMass, 0.0)

);
}

return massStickPtr ();

}

template<class CloudType>
bool Foam::LocalInteractionStickReboundSplash<CloudType>::correct
(

typename CloudType: :parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const scalar trackFraction,

const tetIndices& tetls

label patchI = patchData .applyToPatch(pp.index());

if (patchI >= 0)
{
vector& U = p.U();
bool& active = p.active();

typename PatchInteractionModel<CloudType>::interactionType it =
this->wordToInteractionType
(
patchData [patchI].interactionTypeName()
)

switch (it)
{
case PatchInteractionModel<CloudType>::itEscape:

{

scalar dm = p.mass()*p.nParticle();

keepParticle = false;
active = false;
U = vector::zero;
nEscape [patchI]++;
massEscape [patchI] += dm;
if (writeFields )
{
label pI = pp.index();
label fI = pp.whichFace(p.face());
massEscape().boundaryField() [pI][fI] += dm;
}
break;
}
case PatchInteractionModel<CloudType>::itStick:
{

Figure 23: LocalInteractionStickReboundSplash.C, lines 166 to 222.
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223 scalar dm = p.mass()*p.nParticle();

224

225 keepParticle = true;

226 active = false;

227 U = vector::zero;

228 nStick [patchI]++;

229 massStick [patchI] += dm;

230 if (writeFields )

231 {

232 label pI = pp.index();

233 label fI = pp.whichFace(p.face());

234 massStick().boundaryField()[pI][fI] += dm;

235 }

236 break;

237 }

238 case PatchInteractionModel<CloudType>::itRebound:

239 {

240 keepParticle = true;

241 active = true;

242

243 vector nw;

244 vector Up;

245

246 this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

247

248 // Calculate motion relative to patch velocity

249 U -= Up;

250

251 scalar Un = U & nw;

252 vector Ut = U - Un*nw;

253

254 if (Un > 0)

255 {

256 U -= (1.0 + patchData [patchI].e())*Un*nw;

257 }

258

259 U -= patchbData [patchI].mu()*Ut;

260

261 // Return velocity to global space

262 U += Up;

263

264 break;

265 }

266 4
[1/77777177777777777777777777777777777777777777777/77/7/77777777//7//7///7/@
/11111711177

267 //CASE SWITCH FOR REBOUND-SPLASH OF SNOW GRAINS

268 case PatchInteractionModel<CloudType>::itStickReboundSplash:

269 {

270 vector nw;

271 vector Up;

272 this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

273

274 const fvMesh& mesh = this->owner().mesh();

275 cachedRandom& ranGen = this->owner().rndGen();

276 label pI = pp.index();

277 label fI = pp.whichFace(p.face());

Figure 24: LocalInteractionStickReboundSplash.C, lines 223 to 277.
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321

322
323
324
325
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328

scalar cellArea = mesh.magSf().boundaryField()[pI][fI];
label cellInd = mesh.faceOwner()[fI];

// Calculate motion relative to patch velocity
U -= Up;

vector n = -nw;
vector Un = (U & n)*n;

vector Utl = U - Un;
vector t1 = Utl/(mag(Utl)+ROOTVSMALL);

vector t2 = t1™n;

// Impact Properties
scalar i vel = mag(U);

scalar n_impact = p.nParticle(); //number of particles 4
in the parcel
scalar pMassParcel=p.nParticle()*p.mass(); //mass of the parcel

scalar i ene=0.5*pMassParcel*pow(i vel,2);
scalar i _mom=pMassParcel*i vel;

scalar i_angl = atan(mag(Un)/ (mag(Utl)+ROOTVSMALL) );

scalar slope = 0.0;

// 1 _ang2 is impacting angle with respect to bed surface, or vang d
of impacting particle
// To get the horizontal angle with respect to impacting plane, d

must set i_ang2
i ang2=0.0;

// PART I: REBOUNDING OF GRAINS
scalar prob reb= 0.9*%(1.0-exp(-2.0*1i vel)); //Probability of a
rebound for particles
scalar rand = ranGen.sample@l<scalar>();
if(rand<prob reb && (U & n)<=0. )
{
//Sampling ejection angle from distribution
scalar r_vel=0.5*%i vel;
scalar mean= 45.0/180*constant::mathematical::pi;

scalar v_ang = d
sizeDistributionTriple ->exponentialSample(mean,0.0);
v_ang = min(constant::mathematical::piByTwo, a

max(-constant: :mathematical: :piByTwo, v_ang+slope));
Un = (r_vel*sin(v_ang))*n;
Utl = (r_vel*cos(v_ang))*tl;

U = Utl+Un;
// Return velocity to global space
U += Up;

keepParticle = true;
active = true;

Figure 25: LocalInteractionStickReboundSplash.C, lines 278 to 328.
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}

else

{
//1f probability < probability of rebound: back to the snow bed
this->owner().massDeposition().boundaryField() [pI][fI] += a
(pMassParcel)/cellArea;
this->owner().massCheckPatterns().boundaryField () [pI][fI] += a
(pMassParcel)/cellArea;
keepParticle = false;
active = false;
U = vector::zero;

}

// PART II: SPLASHING OF GRAINS

scalar epsilonf = 0.96*(1.0-prob_reb*patchData [patchI].epsilonr());
scalar av_d3= a
pow(patchData [patchI].dm()+pow(patchData [patchI].ds(),2.0)/patchDaa
ta [patchI].dm(),3.0);

scalar sd d3 = 3
av_d3*sqrt(pow(l.0+pow(patchData [patchI].ds()/patchData [patchI].dmad
(),2.0),9.0)-1.0);

scalar av_vel = 0.25*pow(i vel,0.3);

scalar av_vel2 2.0*pow(av_vel,2.0);

scalar av_mass = p.rho()*constant::mathematical::pi/6.0*av_d3;

scalar sd vel = av vel;

scalar sd vel2 = 2.0*sqrt(5.0)*pow(av_vel,2.0);

scalar sd mass = p.rho()*constant::mathematical::pi/6.0*sd d3;

scalar cos a = 0.75;
scalar cos b = 0.96;
scalar cos i = cos(i_angl);

scalar av_massvel = av_mass*av_vel*cos a*cos b + P
patchData [patchI].corrm()*sd mass*sd vel;

scalar av_massvel2 = av_mass*av_vel2 + P
patchData [patchI].corre()*sd mass*sd vel2;

// Number of ejected particles based on energy/momentum a
conservation (Comola & Lehning, 2017)

scalar n_splashl = a
i ene*(1.0-prob_reb*patchData [patchI].epsilonr() - d
epsilonf )/(0.5*av_massvel2+patchData [patchI].bEne()+RO0OTVSMALL);
scalar n_splash2 = i _mom*cos_i*(1.0 - 4
prob_reb*patchData [patchI].mur() - a

patchData_[patchI].muf())/(av_massvel+ROOTVSMALL);
scalar n_splash = min(n_splashl,n splash2);

// Sampling of particle properties
// Condition: number of splashed particles >= number of impacting a
particles (model choice)
if(n_splash>=n_impact)
{
// Taking into account an unfilled last parcel
label npl = label(n_splash/patchData [patchI].pppMax())+1;

for(label ipl=1; ipl<=npl; ipl++)
{

Figure 26: LocalInteractionStickReboundSplash.C, lines 329 to 371.
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scalar d g = 4
sizeDistributionTriple ->logNormalSample(patchData [patchI].a
dm(),patchData [patchI].ds());

dg = a
min(patchData [patchI].d max(),max(d g,patchData [patchI].d &
min()));

scalar mass g = 4

p.rho()*constant: :mathematical: :pi*pow(d g,3)/6.0;

scalar dep mass = P
(this->owner().massDeposition().boundaryField()[pI][fI])*cela
1lArea;

scalar temp mass = 0.0;

if(ipl!=npl)

{
temp mass = patchData [patchI].pppMax()*mass g;
}
else // Condition for unfilled last parcel
{
temp_mass = 4
(n_splash-(npl-1)*patchData [patchI].pppMax())*mass g;
}
if (temp mass > dep mass)
{
temp _mass = dep mass;
}
if(temp _mass > 0.0) //If negative, no more snow at the a
surface
{
parcelType* pPtr = new parcelType(mesh, a

p.position(),p.cell(), p.tetFace(), p.tetPt());

// Check/set new parcel thermo properties
this->owner().setParcelThermoProperties(*pPtr, 0.0);

pPtr->d()=d g;
pPtr->nParticle()=temp mass/mass g;
// Check/set new parcel injection properties

this->owner().checkParcelProperties (*pPtr, d
0.0*mesh.time().deltaTValue(), false);

// Random sampling of velocities and angles from d
statistical distributions
scalar 4

e vel=sizeDistributionTriple ->exponentialSample(av vel,0.0)3d

scalar P
v_ang=sizeDistributionTriple ->exponentialSample(50.0/180.0*3a
constant: :mathematical::pi,0.0);

scalar d
h_ang=sizeDistributionTriple ->normalSample(i ang2,15.0/180.3
0*constant: :mathematical::pi);

Figure 27: LocalInteractionStickReboundSplash.C, lines 372 to 410.
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}

}

}

break;

h ang = min(constant::mathematical::pi,
max(-constant::mathematical::pi, h_ang));
v_ang = min(constant::mathematical::piByTwo,

max(-constant::mathematical: :piByTwo, v_ang+slope));

vector Un splashing = (e vel*sin(v_ang))*n;

vector Utl splashing (e _vel*cos(v_ang)*cos(h_ang))*tl;
vector Ut2 splashing (e_vel*cos(v_ang)*sin(h_ang))*t2;
vector Ut splashing =

Un_splashing+Utl splashing+Ut2 splashing;

// Return velocity to global space
Ut _splashing += Up;

// Assigning the splashing linear velocity
pPtr->U()=Ut_splashing;

// Apply corrections to position for 2-D cases
meshTools::constrainToMeshCentre(mesh, pPtr->position());

// Apply correction to velocity for 2-D cases
meshTools::constrainDirection
(

mesh,

mesh.solutionD(),

pPtr->U()
)5
this->owner().addParticle(pPtr);
this->owner().massDeposition().boundaryField()[pI]1[fI] -=
temp_mass/cellArea;
this->owner().massCheckPatterns().boundaryField()[pI]1[fI]
temp _mass/cellArea;

}

4

I1777777777777777777777777777777777777777777777777777777777777/7777777//7/@

111111111717

default:

{

FatalErrorIn

(

<<

<< patchData [patchI].interactionTypeName()

<<

<< it <<

Figure 28: LocalInteractionStickReboundSplash.C, lines 411 to 459.
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460 << patchData [patchI].patchName()
461 << << this->interactionTypeNames
462 << endl << abort(FatalError);

463 }

464 }

465

466 return true;

467 }

468

469 return false;

470 | }

471

472

473 template<class CloudType>

474 | void Foam::LocalInteractionStickReboundSplash<CloudType>::info(Ostream& os)
475 | {

476 // retrieve any stored data

477 labellList npeO(patchData .size(), 0);

478 this->getModelProperty( , npeod);

479

480 scalarList mpeO(patchData .size(), 0.0);

481 this->getModelProperty( , mpe0);

482

483 labellList npsO(patchData .size(), 0);

484 this->getModelProperty( , hpsO);

485

486 scalarList mpsO(patchData .size(), 0.0);

487 this->getModelProperty( , mps0);

488

489 // accumulate current data

490 labelList npe(nEscape );

491 Pstream::listCombineGather(npe, plusEqOp<label>());
492 npe = npe + npeod;

493

494 scalarList mpe(massEscape );

495 Pstream::listCombineGather(mpe, plusEqOp<scalar>());
496 mpe = mpe + mpe0d;

497

498 labellList nps(nStick );

499 Pstream::listCombineGather(nps, plusEqOp<label>());
500 nps = nps + npso;

501

502 scalarList mps(massStick );

503 Pstream::listCombineGather(mps, plusEqOp<scalar>());
504 mps = mps + mpso;

505

506

507

508 forAll(patchData , 1)

509 {

510 0s <<

511 << patchData [i].patchName() << nl

512 << << npel[i]
513 << << mpe[i] << nl

514 << << nps[i]
515 << << mps[i] << nl;

516 }

Figure 29: LocalInteractionStickReboundSplash.C, lines 460 to 516.
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517

518 if (this->outputTime())

519 {

520 this->setModelProperty( , npe);
521 nEscape = 0;

522

523 this->setModelProperty( , mpe);
524 massEscape = 0.0;

525

526 this->setModelProperty( , nps);
527 nStick = 0;

528

529 this->setModelProperty( , mps);
530 massStick = 0.0;

531 }

532 | }

Figure 30: LocalInteractionStickReboundSplash.C, lines 517 to 533.

3.3.5 Linking libraries

The newly implemented submodel needs to be linked to other classes for compilation purposes.
As a first step, the itStickReboundSplash case needs to be added to the PatchInteractionModel.
For this purpose, open all the files found at the following path:

$WM_PROJECT_USER_DIR/src/lagrangianCRYOS/intermediateCRY0OS/submodels/. ..

Kinematic/PatchInteractionModel/PatchInteractionModel/

For each document, copy the lines where the term "itStick" appears. Replace the
latter by the "itStickReboundSplash" expression to insure that the new switch case
is taken into account. In addition, the LocallnteractionStickReboundSplash submodel
should be specified in .../intermediateCRY0S/Make/files. For this purpose, all
the lines with the term "Locallnteraction" should be copied and the term replaced by

"LocallnteractionStickReboundSplash" within them.

3.4 Adding a momentum source
3.4.1 Definition

A pressure source term &7 was added to the right hand side (RHS) of the flow momentum
equations in the DPMFoam solver to drive the motion of the continuous phase. It is a large-scale
pressure gradient in the streamwise direction = described as:

1 Ops

Y= e L ®
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with p the pressure, u, the surface friction velocity and L, the vertical extent of the domain
(Sharma et al., 2018). This term was introduced in the createFields.H and UcEqn.H files
both located at:

$WM_PROJECT_USER_DIR/applications/solvers/snowDPMFoam/

The pressure gradient value is computed within createFields . H using the user-defined friction
velocity u,, flow direction and the height of the domain L, as an input. These variables are
specified in the run/case/constant/transportProperties file. Once the term is computed

within createFields.H, it is integrated in the momentum equation within UcEqgn.H.

3.4.2 OpenFOAM scripts

The two scripts accounting for the momentum source are presented in this subsection. They also
relate to the next section which describes the initial velocity profile settings (sect. 3.5). Figures
31 to 35 show the createFields.H file. On the other hand, Figure 36 shows UcEqn.H. Lines
170 to 250 of createFields.H contain the part that was implemented for the snow transport
model. The pressure gradient is computed through several variables (lines /76 - 190) and stored
in the volVectorField gradP (lines /85 to 210). The latter is then inserted on the RHS of the
equation in UcEqn . H (line 7).
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ONOUTA WN =

Info<< << endl;

IOdictionary transportProperties
(

IOobject

(

runTime.constant(),

mesh,
IOobject::MUST READ IF MODIFIED,
IOobject::NO WRITE,

false

)
word contiuousPhaseName(transportProperties.lookup(

dimensionedScalar rhocValue
(
IOobject: :groupName( , contiuousPhaseName),
dimDensity,
transportProperties.lookup
(
IOobject: :groupName ( , contiuousPhaseName)
)
);

volScalarField rhoc
(
IOobject
(
rhocValue.name(),
runTime.timeName(),
mesh,
IOobject::NO READ,
IOobject::AUTO WRITE
),
mesh,
rhocValue
)

Info<< << endl;
volVectorField Uc
(

IOobject

(
IOobject: :groupName ( , contiuousPhaseName),
runTime.timeName(),
mesh,

I0object: :MUST_READ,
IOobject::AUTO WRITE
),
mesh
)
Info<< << endl;
volScalarField p

Figure 31: createFields.H, lines 1 to 57.
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58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

IOobject
(

runTime.timeName(),
mesh,
IOobject::MUST READ,
IO0object: :AUTO WRITE

mesh
);
Info<<

<< endl;

surfaceScalarField phic
(

IOobject

(
IOobject: :groupName ( , contiuousPhaseName),
runTime.timeName(),
mesh,

IOobject::READ_IF PRESENT,
IOobject: :AUTO WRITE

),
linearInterpolate(Uc) & mesh.Sf()

);

label pRefCell = 0;

scalar pRefValue = 0.0;

setRefCell(p, mesh.solutionDict().subDict( ), pRefCell, pRefValue);
Info<< << endl;

singlePhaseTransportModel continuousPhaseTransport(Uc, phic);

volScalarField muc
(

IOobject

(
IOobject: :groupName ( , contiuousPhaseName),
runTime.timeName(),
mesh,

IO0object::NO_READ,
IO0object::AUTO WRITE
),
rhoc*continuousPhaseTransport.nu()

);

Info << << endl;
// alphac must be constructed before the cloud
// so that the drag-models can find it
volScalarField alphac
(

IOobject

(

Figure 32: createFields.H, lines 58 to 114.
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115 IOobject: :groupName ( , contiuousPhaseName),
116 runTime.timeName(),

117 mesh,

118 IO0object::READ IF PRESENT,

119 IOobject::AUTO WRITE

120 ).,

121 mesh,

122 dimensionedScalar( , dimless, 0)

123 );

124

125 word kinematicCloudName ( )

126 args.optionReadIfPresent( , kinematicCloudName);
127

128 Info<< << kinematicCloudName << endl;
129 basicKinematicTypeCloud kinematicCloud

130 (

131 kinematicCloudName,

132 rhoc,

133 Uc,

134 muc,

135 g

136 H

137

138 // Particle fraction upper limit

139 scalar alphacMin

140 (

141 1.0

142 - readScalar

143 (

144 kinematicCloud.particleProperties().subDict(

145 . Lookup ( )

146 )

147 H

148

149 // Update alphac from the particle locations

150 alphac = max(1.0 - kinematicCloud.theta(), alphacMin);

151 alphac.correctBoundaryConditions();

152

153 surfaceScalarField alphacf( , fvc::interpolate(alphac))
154 surfaceScalarField alphaPhic( , alphacf*phic);
155

156

157 autoPtr<PhaseIncompressibleTurbulenceModel<singlePhaseTransportModel> >
158 continuousPhaseTurbulence

159 (

160 PhaseIncompressibleTurbulenceModel<singlePhaseTransportModel>: :New
161 (

162 alphac,

163 Uc,

164 alphaPhic,

165 phic,

166 continuousPhaseTransport

167 )

168 H

169

170 scalar vKC_ = readScalar(transportProperties.lookup( ));
171 Info << << VKC << << endl;

Figure 33: createFields.H, lines 115 to 171.
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172

173 scalar Z0_ = readScalar(transportProperties.lookup( ));

174 | Info << << Z0 << << endl;

175

176 scalar Ustar = readScalar(transportProperties.lookup( ));

177 | Info << << Ustar << << endl;

178

179 scalar H = readScalar(transportProperties.lookup( ));

180 | Info << << H << << endl;

181

182 vector flowDirection (transportProperties.lookup( ));

183 Info << << flowDirection << <<
endl;

184

185 | bool constantPGrad (transportProperties.lookupOrDefault<bool>( ,
false));

186 Info <<

<< constantPGrad << << endl;

187

188 | vector dP_dx = (constantPGrad ) ? (Foam::pow(Ustar ,2.0)/H )*flowDirection
vector::zero;

189 Info << << dP_dx <<

<< endl;

190

191 scalar noiseFactor_ = readScalar(transportProperties.lookup( ));

192 | Info << << noiseFactor_ << << endl;

193

194

195 | const pointField& ctrs = mesh.cellCentres();

196

197 | volVectorField gradP

198 (

199 I0object

200 (

201 )

202 runTime.timeName(),

203 mesh,

204 IOobject::NO READ,

205 IO0object::AUTO WRITE

206 )

207 mesh,

208 dimensionedVector( , dimForce/dimVolume/dimDensity, dP_dx),

209 zeroGradientFvPatchVectorField: :typeName

210 )

211

212

213 | if ( runTime.timeName() == )

214 | {

215 Random ranGen (label(0));

216

217 label totalCellNumber=ctrs.size();

218 reduce(totalCellNumber, sumOp<label>());

219 scalarField randomNumbersAllMesh(totalCellNumber, 0.0);

220 forAll(randomNumbersAllMesh, i)

221 {

222 randomNumbersAllMesh[i]=ranGen .scalar01();

223 }

Figure 34: createFields.H, lines 172 to 223.
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224
225
226
227
228
229
230
231
232
233
234
235
236
237

238
239
240
241
242
243
244

245
246
247
248
249
250

Info << << totalCellNumber << endl << endl;

labellList LcellN(Pstream::nProcs());
LcelIN[Pstream: :myProcNo()] = ctrs.size();
Pstream: :gatherList(LcellN);
Pstream::scatterList(LcellN);

label startLable=0;
for(label proc=1; proc<=Pstream::myProcNo(); proc++)

{
startLable+=LcellN[proc-1];
}
Info<< << 3

runTime.timeName() << nl << endl;
forAll(ctrs, celll)
{
scalar randNumber=randomNumbersAllMesh[cellI+startLable];
scalar noise = (2.0*randNumber)-1.0;
scalar varianceFact = 3.0*noiseFactor *pow(Ustar ,2);
scalar cellHeight = ctrs[celll].z();
Uc[celll] = 4
(((Ustar_/vKC )*Foam::log(cellHeight/Z0 ))+varianceFact *noise *((H -0.9*celad
1Height)/H ))*flowDirection ;
Info << << Uc[cellI] << endl;

}
Uc.correctBoundaryConditions();
phic=linearInterpolate(Uc) & mesh.Sf();

Figure 35: createFields.H, lines 224 to 250.
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1 fvVectorMatrix UcEqgn

2 (

3 fvm::ddt(alphac, Uc) + fvm::div(alphaPhic, Uc)

4 - fvm::Sp(fvc::ddt(alphac) + fvc::div(alphaPhic), Uc)
5 + continuousPhaseTurbulence->divDevRhoReff (Uc)

6 ==

7 gradP

8 + (1.0/rhoc)*cloudSU

9

10 )

11

12 | UcEgn.relax();

13

14 | volScalarField rAUc(1.0/UcEgn.A());

15 surfaceScalarField rAUcf( , fvc::interpolate(rAUc));
16

17 surfaceScalarField phicForces

18 (

19 (fvc::interpolate(rAUc*cloudVolSUSu/rhoc) & mesh.Sf())
20 +

21 rAUcf*(g & mesh.Sf())

22| );

23

24 | if (pimple.momentumPredictor())

25 | {

26 solve

27 (

28 UcEgn

29 ==
30 fvc::reconstruct
31 (
32 phicForces/rAUcf - fvc::snGrad(p)*mesh.magSf()
33 )
34 )
35| }

Figure 36: UcEqn.H, lines 1 to 35.

3.5 Initial velocity profile

In order to reach faster the flow equilibrium, an initial velocity profile is imposed at the beginning
of the simulation. Itis expected that turbulent eddies lead to an irregular logarithmic law velocity
profile. This is taken into account through the varianceFact__ and noise__ scalars that add some

variability and noise to the theoretical velocity curve (line 244 of createFields.H).

3.6 Implementation of volScalarField objects

In order to visualize the erosion and deposition of particles occurring at the snow bed as
well as the friction velocity, several volScalarField objects were inserted directly into the
KinematicCloud template files (path specified in section 3.2.4). This allows to have objects
updated by both the aerodynamic lift and rebound-splash submodels. Note that this particular

step requires extra care from the user as changes are brought to the core classes of the
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lagrangian library. To add these variables, search the already implemented variable called
"Ucoeft" and copy every instance of it in the KinematicCloud.C, KinematicCloud.H and
KinematicCloudI.H files.

volScalarField. Also bring changes to the units by adding "dimMass/dimArea" for the mass

Within the copied text, replace the DimensionedField type by

per area objects or "dimVelocity" for the surface friction velocity in the definition of the object.

Table 2 summarizes the implemented objects that belong to the volScalarField type.

volScalarField name

Utility

massDeposition

Allows the control of the amount of particles that gets
generated within each cell. The available snow mass
per surface area is constantly updated when particles get
deposited or eroded. A negative value for this object
prevents particles from being created in the numerical
domain. Occurence: Figures 13-14 (LoglLawShearStress)
and 26-27-28 (LocallnteractionStickReboundSplash).

massCheckPatterns

Records cumulatively the mass per unit area that gets
eroded and deposited in each cell for the whole simulation.
At each time step, this object is updated by both
submodels and allows the visualization of the snow
distribution patterns resulting from the model. Occurence:
Figures 14 (LoglLawShearStress, line 221) and 26-28
(LocallnteractionStickReboundSplash, lines 334 and 437).

massDepRate

Reports the mass deposition/erosion rates per cell at each
timestep based on the newly computed massCheckPatterns
values and the ones from the previous time step. Occurence:

Figures 14 (LogLawShearStress, line 231).

surfaceUfric

Stores the surface friction velocity computed within each
surface cell and which is used within the aerodynamic lift
submodel. The friction velocity can be computed in two

ways. Occurence: Figure 14 (LoglLawShearStress, line 224).

Table 2: List of the volScalarField objects implemented in OpenFOAM.
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End note

This tutorial shows the main implementation scripts of the new OpenFOAM lagrangian
submodels created to simulate the aeolian transport of snow. We refer to this first version of
the model as snowBedFoam 1.0. The parts of the scripts that were not displayed in the figures
(e.g. the KinematicCloud files) can be found within the official repository of the code (WSL-SLF
GitLab).
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