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1 Legend & Symbols

OpenFOAM terminal command (within OpenFOAM environment)
regular Linux terminal command
OpenFOAM dictionary name

OpenFOAM-related variable
Figure X-00, with X the figure and 00 the line number

2 Introduction

The present document contains guidelines to run simulations with the aeolian snow transport
model that was implemented in the open source computational fluid dynamics (CFD) software
OpenFOAM (OF). The model code was developed in the context of a master thesis within the
CRYOS Laboratory of the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the WSL
Institute for Snow and Avalanche Research SLF, Switzerland. Two submodels were added to the
original OpenFOAM Lagrangian library to simulate the transport of snow particles by the wind,
in particular for medium- (saltation) and small-sized (suspension) particles. The theoretical
framework for snow transport processes and their related mathematical expressions, in addition
to the OpenFOAM scripts embedding the different submodels for snow movement can be found
in a complementary tutorial. The present document explains in details how to install OpenFOAM
and run a standard snow transport case with the software.

3 Installing the core softwares

The standard version of the OpenFOAM software needs to be installed prior to running
simulations with the snowBedFoam 1.0. model. It is recommended to employ a Linux system for
running OpenFOAM. The installation guidelines that follow are meant for a computer running
with Ubuntu 18.04 of the Linux distribution; they may slightly vary depending on the Linux
version that is used.

3.1 OpenFOAM v2.3.0.

The Eulerian-Lagrangian snow transport model that we developed is implemented in the
version 2.3.0. of OpenFOAM. This version can be installed following the same guidelines as
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for OpenFOAM 2.3.1: the only difference is to replace the 1 by 0 in the version number. To
install OpenFOAM, do as follows:

1. Follow instructions for the given website, but with replacing 2.3.1. by 2.3.0:
https://openfoamwiki.net/index.php/Installation/Linux/OpenFOAM-2.3.1/Ubuntu#Ubuntu_18.04
2. Download the Source Pack for OpenFOAM 2.3.0 at:
https://openfoam.org/download/2-3-0-source
3. Copy the following line in your .bashrc file to set-up the OpenFOAM environment (should
be done automatically if the guidelines are followed properly):
alias of230=’source $HOME/OpenFOAM/OpenFOAM-2.3.0/etc/bashrc
WM_NCOMPPROCS=10 WM_MPLIB=SYSTEMOPENMPI; export WM_CC=gcc-5; export
WM_CXX=g++-5’
Once OpenFOAM is installed, the customized libraries can be added to the standard version of
the model.

3.1.1 CRYOS-OF Snow transport model

In order to add the CRYOS aeolian snow transport model to the standard version of OpenFOAM
2.3.0, it is needed to copy within the user folder the modified version of the Lagrangian library
(available on GitHub, see instructions at the end of this document). This directory can be created
by typing in the terminal (with the OpenFOAM environment):
mkdir -p $WM_PROJECT_USER_DIR
Within this directory, copy the src, run and applications folders adapted to snow transport
modelling and available on GitHub. Then, compile by running the commands:
of230 (to set-up the OF environment)
./wclean (to clean all the files that were compiled)
./wmake libso (to compile all the libraries)
./wmake libso (to have a summary of the compilation)
These commands need to be ran successively within the src/lagrangianCRYOS/ folder inside the
1) distributionModelsTriple and 2) intermediateCRYOS subfolders. Once this is done, go into
the applications/solvers/snowBedFoam folder and run the following commands:
./Allwclean (to clean all the files that were compiled)
./Allwmake (to compile all the libraries)
If there are any errors occurring during the compilation, their origin and type will appear in red
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on the terminal window.

4 Meshing Procedure (before OpenFOAM)

4.1 Generating STL file

In order to create the specific topography on which the snowBedFoam solver is run, it is
necessary to create a tri-dimensional representation of it. To do so, we created a STL file based
on the ASC files of the sea ice relief. Multiple tri-surface format files exist - their type depends
on the software that is employed to generate the mesh.

4.2 Meshing software

OpenFOAM supplies several meshing softwares such as SnappyHexMesh
(https://cfd.direct/openfoam/user-guide/v6-snappyhexmesh/ ) or cfMesh
(https://cfmesh.com/cfmesh/ ): more information is given on their respective websites.
cfMesh has the advantage to allow parallel processing and a more automatized procedure, which
can be a interesting depending on the situation. We employed the meshing software ANSYS®
mesher because more familiar with the latter.

5 Running a case with OpenFOAM: General Procedure

5.1 Case structure

Before starting, note that it is always necessary to type the command of230 to set up the
OpenFOAM environment. The simulation cases are located in the run folder of the user folder
(accessible directly through the run command). We provided in our code repository a case
example called "exampleCase" which should be copied inside the latter. To understand the
structure of OpenFOAM cases, it is very useful to read the general OpenFOAM guide and more
especially the case structure page at:
https://cfd.direct/openfoam/user-guide/v6-case-file-structure/.
To roughly summarize, the constant directory contains all the files related to flow and
particle settings. This is where the flow (turbulenceProperties, Figure 8) and particle
(kinematicCloudProperties, Figures 4-7) properties are controlled. The system directory
contains all the files related to general simulation set-up such as start and end time, timestep etc.
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located in the controlDict file (Figure 9). It is also in the system directory that pre-processing
scripts such as decomposeParDict (Figure 11) or createPatchDict (Figures 2-3) are found.
Finally, in the 0 directory are found for each computational variable (pressure, velocity, k, ε and
others) the boundary conditions specified at every patch at the initial timestep. When running
the simulations, some additional time directories are added with the variable values computed
by OpenFOAM. They are many options possible and it is generally time-consuming to figure out
the correct set of BCs: several tests are needed, for which the pressure and velocity behaviour
should be thoroughly checked within the whole domain. Additional files directly located in the
case directory such as Allrunp (Figure 1) or Allrun are used to call one by one the necessary
applications to run a simulation. Basically, the whole simulation routine can be saved in one
file (in our case: Allrunp to be ran in parallel) that can be run with the command ./file_name.
The computer executes line by line the commands stored in these files. There are a good way to
remember exactly the steps to run a case. In the next sections, we refer to the execution lines of
the Allrunp file in Fig.1 to describe the main steps.

1   #!/bin/sh
2   cd ${0%/*} || exit 1 # run from this directory
3   
4   # Source tutorial run functions
5   . $WM_PROJECT_DIR/bin/tools/RunFunctions
6   
7   rm -r log.*
8   rm -r *.obj
9   
10   # Get application directory
11   application=`getApplication`
12   echo $application
13   
14   ## Get the number of processors to run on from system/decomposeParDict
15   nProc=$(getNumberOfProcessors)
16   echo "the number of processors to run on from system/decomposeParDict: $nProc"
17   
18   # Create mesh 
19   runApplication fluent3DMeshToFoam MOSAiC_seaice.msh
20   
21   # Re-assign the patches 
22   runApplication createPatch -overwrite
23   
24   # Distribute domain among processors
25   runApplication decomposePar
26   
27   # Run snow transport model
28   runApplication mpirun -np $nProc $application -parallel
29   
30   Figure 1: Example of Allrunp file to run sea ice simulations.
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5.2 Main Steps

To run an OpenFOAM simulation, it is first necessary to create the mesh on which to run the
simulations. This is doable with several softwares, as described above (Section 4.2). Once the
mesh is created, there is a need to translate it into an OpenFOAM mesh format (Fig.1-19) and
to re-define the boundary conditions (if a non-OpenFOAMmeshing software is used, Fig.1-22).
Then, the mesh in the appropriate format can be decomposed on several processors (Fig.1-25)
. Once this is done, the CFD solver snowBedFoam can be run (Fig.1-28) . Most of the data
analysis and visualization occurs with Paraview which is one of the third parties softwares of
OpenFOAM. The main steps are described in more details hereafter.

5.3 Forums

There are many questions that have been asked and answered through online forums. The main
one is called CFD-Online (https://www.cfd-online.com). If issues are encountered, the first
resource is to look up there. Open source softwares such as OpenFOAM have the advantage
to have a strong user community which is ready to help.

6 Before the OpenFOAM run: Pre-Processing

The main steps for pre-processing a simulation case are summarized in this section. The purpose
here is to show the set-up for our snow transport simulations rather than fully detail all the
OpenFOAMoption settings: there is an infinity of them and it is better to refer to the OpenFOAM
official guide for more information.

6.1 Mesh set-up

6.1.1 Conversion to appropriate mesh format

Once that the mesh has been imported as a .msh file directly from ANSYS mesher, it can be
converted into an OpenFOAMmesh via the command fluent3DToFoammesh_name.msh. The
mesh coordinates and boundary types can be investigated into the folder constant/polyMesh.
More especially in the boundary file, the names and the types of the patches can be read as well
as the number of constitutive cells. Note that this command may vary depending on the meshing
software that is used. The appropriate commands are stated in the official documentation.
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6.1.2 Renaming patches and defining their types

Once that the mesh is in the appropriate OF format, all the patches should be given a right
name and boundary condition with the command createPatch -overwrite. This command invokes
the createPatchDict dictionary (Figures 2-3) into which the user can specify the accurate
names needed for each patch and the correct boundary conditions. Note that this step is also
mesher-dependent. The createPatchDict dictionary allows to link the cyclic patches together
(defining the exact correspondance between cells) such as in line 43-44 of Figure 2. Regarding
the renaming of the patches, names such as xMin (Fig.2-39) and xMax (Fig. 2-57) are a good
option for the patches perpendicular to the x-axis while yMin (Fig.3-75 ) and yMax (Fig. 3-91)
are suited for the patches perpendicular to the y-axis. These settings depend on the preferences
of the user, however.

Once that the patch names have been changed, the mesh quality can be checked through the
command checkMesh -allGeometry -allTopology. This tells directly if the mesh is OK or not.
If the expression "Mesh OK" does not appear at the end of the command, this means that the
simulations are going to blow up and the results will not be consistent. If the mesh-check did not
work, it is necessary to go back to ANSYS mesher (or other) and to re-create the mesh. Usually
a solution consists in using smaller cell dimensions.

6.2 Flow and particle parameters

In order to set up the flow and particle parameters, the kinematicCloudProperties and
turbulenceProperties dictionaries located in the constant subfolder are used. Here, the
particle properties correspond to the ones of snow but they can be easily changed to any kind of
material that is needed for the simulations.

6.2.1 Setting up the snow particle properties: kinematicCloudProperties

In the constant folder, the kinematicCloudProperties file controls all the simulation settings
related to the snow particles model, as shown in Figures 4 to 7. Note that the variables with a $
symbol in front are defined in the setUp file within the simulation case folder.

At first, when testing the flow, it is important to put the coupling (Fig.4-24) and
active (Fig.4-23) settings to false. This will totally delete the production of particles
and allow to restrictly study the flow field. To summarize, the aerodynamic lift of
snow can be activated and set up with the logLawShearStress option of the sub-model
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1   /*--------------------------------*- C++ -*----------------------------------*\
2   | =========                 |                                                 |
3   | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4   |  \\    /   O peration     | Version:  2.1.x                                 |
5   |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6   |    \\/     M anipulation  |                                                 |
7   \*---------------------------------------------------------------------------*/
8   FoamFile
9   {

10   version 2.0;
11   format ascii;
12   class dictionary;
13   object createPatchDict;
14   }
15   // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16   // This application/dictionary controls:
17   // - optional: create new patches from boundary faces (either given as
18   //   a set of patches or as a faceSet)
19   // - always: order faces on coupled patches such that they are opposite. This
20   //   is done for all coupled faces, not just for any patches created.
21   // - optional: synchronise points on coupled patches.
22   // - always: remove zero-sized (non-coupled) patches (that were not added)
23   
24   // 1. Create cyclic:
25   // - specify where the faces should come from
26   // - specify the type of cyclic. If a rotational specify the rotationAxis
27   //   and centre to make matching easier
28   // - always create both halves in one invocation with correct 'neighbourPatch'
29   //   setting.
30   // - optionally pointSync true to guarantee points to line up.
31   
32   pointSync false;
33   
34   // Patches to create.
35   patches
36   (
37   {
38   // Name of new patch
39   name xMin;
40   // Dictionary to construct new patch from
41   patchInfo
42   {
43   type cyclic;
44   neighbourPatch xMax;
45   
46   transform unknown;
47   matchTolerance 0.01;
48   }
49   // How to construct: either from 'patches' or 'set'
50   constructFrom patches;
51   
52   // If constructFrom = patches : names of patches. Wildcards allowed.
53   patches (xMi);
54   }
55   {
56   // Name of new patch
57   name xMax;

Figure 2: Example of createPatchDict file, lines 1 to 57.

bedAerodynamicLiftInjectionModel (Fig.6-7, lines 158-183). The patch where the
particles should be lifted from (here, snowBed) is defined as well as the way shear stress
should be computed ( tauLogLaw, false for universal shear stress computation). The diameter
properties (including statistical distributions for random sampling) as well as the time when
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58   
59   // Dictionary to construct new patch from
60   patchInfo
61   {
62   type cyclic;
63   neighbourPatch xMin;
64   
65   transform unknown;//rotational;
66   matchTolerance 0.01;
67   }
68   // How to construct: either from 'patches' or 'set'
69   constructFrom patches;
70   // If constructFrom = patches : names of patches. Wildcards allowed.
71   patches (xMi_shadow);
72   }
73   {
74   // Name of new patch
75   name yMin;
76   // Dictionary to construct new patch from
77   patchInfo
78   {
79   type cyclic;
80   neighbourPatch yMax;
81   transform unknown;
82   matchTolerance 0.01;
83   }
84   // How to construct: either from 'patches' or 'set'
85   constructFrom patches;
86   // If constructFrom = patches : names of patches. Wildcards allowed.
87   patches (yMi);
88   }
89   {
90   // Name of new patch
91   name yMax;
92   // Dictionary to construct new patch from
93   patchInfo
94   {
95   type cyclic;
96   neighbourPatch yMin;
97   transform unknown; //rotational;
98   matchTolerance 0.01;
99   }

100   // How to construct: either from 'patches' or 'set'
101   constructFrom patches;
102   // If constructFrom = patches : names of patches. Wildcards allowed.
103   patches (yMi_shadow);
104   }
105   );
106   // ************************************************************************* //
107   

Figure 3: Example of createPatchDict file, lines 58 to 106

particles should start to be injected (start of activation, SOA) are also defined in the submodel
coefficients. Similarly, the splashing-rebounding of particles can be controlled with the
patchInteractionModel parameters (Figures 5-6, lines 100-147). Several parameters can
be set in this file such as the maximum probability of rebound Pr or the rebounding restitution
coefficient. These parameters are detailed in the implementation tutorial complementary to the
present one, together with the equations involving them. Finally, in case some precipitation
particles need to be added, it is important to uncomment the model1 in the injectionModels

sub-section as show in Figure 5, lines 70-95. The massTotal is computed based on the total
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number of particles that should be injected within duration seconds. Based on the mean particle
diameter specified in expectation, the total particle volume can be found and then the mass to be
injected can be derived using the particle density.

1   /*--------------------------------*- C++ -*----------------------------------*\
2   | =========                 |                                                 |
3   | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4   |  \\    /   O peration     | Version:  2.3.0                                 |
5   |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6   |    \\/     M anipulation  |                                                 |
7   \*---------------------------------------------------------------------------*/
8   FoamFile
9   {

10   version 2.0;
11   format ascii;
12   class dictionary;
13   location "constant";
14   object kinematicCloudProperties;
15   }
16   // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17   #include "../setUp" // include file with all the settings
18   
19   // NUMERICAL SETTINGS
20   solution
21   {
22   // Activation of particles and coupling method
23   active true;//false; // activation of particles
24   coupled true;//false; //two-way coupling
25   transient yes;
26   cellValueSourceCorrection on;
27   
28   // Interpolation method
29   interpolationSchemes
30   {
31   rho cell;
32   U cellPoint;
33   mu cell;
34   }
35   
36   // Integration method
37   integrationSchemes
38   {
39   U analytical; //Euler;
40   }
41   
42   // Relaxation
43   sourceTerms
44   {
45   schemes
46   {
47   U semiImplicit 0.5; //the number is relaxCoeff for the field
48   }
49   }
50   }
51   // FLOW PROPERTIES
52   constantProperties
53   {
54   rho0 $rhoPar;
55   Omega0 (0 0 0);
56   alphaMax 1;
57   }

Figure 4: kinematicCloudProperties file, lines 1 to 57.
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58   // PARTICLE SUBMODELS
59   subModels
60   {
61   // Acting forces
62   particleForces
63   {
64   sphereDrag;
65   
66   gravity;
67   }
68   
69   // Injection models
70   injectionModels
71   {
72   model1
73   {
74   type patchInjection;
75   parcelBasisType mass;
76   patchName atmosphere; //patch for injecting particles
77   U0 (0 0 -1.544); //terminal fall velocity
78   sizeDistribution //particle size distribution
79   {
80   type normal;
81   normalDistribution
82   {
83   expectation 0.0002;
84   variance 0.00005;
85   minValue 5e-5;
86   maxValue 0.0005;
87   }
88   }
89   flowRateProfile constant 1; //flow rate
90   massTotal 3543.45; //kg. Mass injected in "duration"
91   SOI 0;
92   duration 3600; //s. Time duration where massTotal is 

injected. 
93   parcelsPerSecond 0.05e6; //number of particles per s.
94   }
95   }
96   // Particle dispersion model
97   dispersionModel none;
98   
99   // Rebound-splash of snow particles

100   patchInteractionModel localInteractionStickReboundSplash; //none;
101   
102   localInteractionStickReboundSplashCoeffs
103   {
104   
105   patches
106   (
107   atmosphere
108   {
109   type escape;
110   e 1.0;
111   mu 0.0;
112   }
113   

Figure 5: kinematicCloudProperties file, lines 58 to 113.

6.2.2 Setting up the flow properties: turbulenceProperties

The flow properties are specified in the turbulenceProperties file, as shown in Figure 8. The
type of turbulence model (here, Reynolds-Averaged Navier-Stokes (RAS)) is specified at line 17
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114   // Snow surface settings
115   snowBed
116   {
117   // Rebound coefficients
118   type stickReboundSplash;
119   Pm 0.9; //(-) max probability of rebound.
120   gamma 2.0; //(-) rebound
121   
122   // Splash entrainment coefficients
123   epsilonr 0.25; //(-) energy balance
124   mur 0.5; //(-) momentum balance
125   muf 0.4; //(-) momentum balance
126   bEne 10e-9; //(-) bed cohesion
127   corrm 0.0; //(-) mass-velocity correlation
128   corre 0.0; //(-) mass-velocity correlation
129   pppMax $pppMax; //maximum number of particles per parcel
130   
131   // Particle diameter properties
132   dm $dm; //m. mean particle diameter
133   ds $ds; //m. std deviation of diameter
134   d_max $d_max; //m. maximum particle diameter
135   d_min $d_min; //m. minimum particle diameter
136   }
137   );
138   // Particle probability distributions
139   sizeDistributionTriple
140   {
141   type normalLogNormalExponential;
142   normalLogNormalExponentialDistribution
143   {
144   //nothing 
145   }
146   }
147   }
148   heatTransferModel none;
149   
150   surfaceFilmModel none;
151   
152   collisionModel none;
153   
154   stochasticCollisionModel none;
155   
156   radiation off;
157   
158   // Aerodynamic entrainment of snow particles
159   bedAerodynamicLiftInjectionModel logLawShearStress; //none;
160   logLawShearStressCoeffs
161   {
162   // Particle probability distributions
163   sizeDistributionTriple
164   {
165   type normalLogNormalExponential;
166   normalLogNormalExponentialDistribution
167   {
168   //nothing 
169   }
170   };

Figure 6: kinematicCloudProperties file, lines 114 to 170.

while the specific submodel (here, k-Epsilon (kEpsilon)) and its coefficient values are defined
at lines 28-36. This model can be changed, depending on the needs of the user.
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171   // Particle and coefficient settings
172   aerodynamicLiftPatch snowBed; //patch for entrainement
173   tauLogLaw false; //shear stress computation method
174   dm $dm; //m. mean particle diameter.
175   ds $ds; //m. std deviation of diameter
176   d_max $d_max; //m. maximum particle diameter
177   d_min $d_min; //m. minimum particle diameter
178   z0 $Z0; //m. aerodynamic roughness.
179   pppMin $pppMin; //number of particles per parcel.
180   SOA 100; //s. start of activation.
181   Acst 0.2; //(-). fluid threshold coefficient.
182   }
183   }
184   
185   cloudFunctions
186   {
187   
188   }
189   
190   // ************************************************************************* //
191   

Figure 7: kinematicCloudProperties file, lines 171 to 190.

1   /*--------------------------------*- C++ -*----------------------------------*\
2   | =========                 |                                                 |
3   | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4   |  \\    /   O peration     | Version:  2.3.0                                 |
5   |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6   |    \\/     M anipulation  |                                                 |
7   \*---------------------------------------------------------------------------*/
8   FoamFile
9   {

10   version 2.0;
11   format ascii;
12   class dictionary;
13   location "constant";
14   object turbulenceProperties;
15   }
16   // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17   simulationType RAS;
18   
19   RAS
20   {
21   RASModel kEpsilon;
22   
23   turbulence on;
24   printCoeffs on;
25   
26   
27   // Optional model coefficients, kEpsilon
28   kEpsilonCoeffs
29   {
30   Cmu 0.033;
31   C1 1.44;
32   C2 1.92;
33   C3 0.0;
34   sigmak 1.0;
35   sigmaEps 1.85;
36   }
37   
38   // ************************************************************************* //
39   

Figure 8: Example of a set up for RANS simulations, defined in the turbulenceProperties file.
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6.3 General simulation settings

6.3.1 controlDict

Figure 9 shows an example of the controlDict dictionary content. The type of the solver
that is employed in the simulation is set at the application line (17). To activate the snow
transport model, the application should be set as snowBedFoam. The total time of the simulation
corresponds to endTime and is specified in seconds. For memory purposes, it is important to
use the command purgeWrite which controls the amount of timesteps after which the time
directories are deleted. For example, if purgeWrite is set to 20, there would constantly be 20
time directories in the case folder, with the earliest being progressively deleted. This prevents
memory problems to happen. Set latestTime for the startFrom option which will make the
simulations start every time from the latest timestep. The maximum timestep maxDeltaT should
not exceed 0.01 seconds for RANS, and even less for Large Eddy Simulations (LES). Another
important parameter to set up is the so-called maxCo or maximum Courant number (see next
section). More information on this can be found on the forums. If you need to average some
fields over time, you can set it up in the functions option under the fieldAverage parameter
in the controlDict dictionary.

6.3.2 setUp file

An important file directly located in the case folder is setUp as shown in Figure 10. Many
parameters related to the flow and particles are defined in that file. More especially, theminimum
(d_min), maximum (d_max), mean (dm) and standard deviation (ds) of the particle diameter used
in the kinematicCloudProperties dictionary are changed directly in setUp (lines 27-30).
Moreover, the pppMax and pppMin parameters which represent the amount of particles per
parcel in the rebound-splash and aerodynamic lift model, respectively, are tuned here. These
variables have an impact on the real time taken to run the simulation. Regarding the flow, the
surface roughness Z0, friction velocity applied in the forcing Ustar and normalized direction of
the fluid forcing flowDirection are set in this file (lines 34-41). More information on the use of
these parameters can be found in the code implementation tutorial.

6.4 Running in parallel: decomposePar

The last step before launching the simulation consists in distributing the different sub-parts of the
mesh to a given processor (if needed to run in parallel) by running the command decomposePar.
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1   /*--------------------------------*- C++ -*----------------------------------*\
2   | =========                 |                                                 |
3   | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4   |  \\    /   O peration     | Version:  2.3.0                                 |
5   |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6   |    \\/     M anipulation  |                                                 |
7   \*---------------------------------------------------------------------------*/
8   FoamFile
9   {

10   version 2.0;
11   format ascii;
12   class dictionary;
13   location "system";
14   object controlDict;
15   }
16   // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17   application snowBedFoam; //snow transport solver
18   
19   startFrom latestTime;
20   
21   startTime 0; //initial timestep (s)
22   
23   stopAt endTime;
24   
25   endTime 1000; //end of simulation time (s)
26   
27   deltaT 1.e-3; //if fixed timestep (s)
28   
29   writeControl adjustableRunTime; //timestep adjusted to maxCo
30   
31   writeInterval 1;
32   
33   purgeWrite 100;
34   
35   writeFormat ascii;
36   
37   writePrecision 6;
38   
39   writeCompression off;
40   
41   timeFormat general;
42   
43   timePrecision 6;
44   
45   runTimeModifiable true;
46   
47   adjustTimeStep yes;
48   
49   maxCo 2; //maximum CFL number
50   
51   maxDeltaT 0.01; //maximum timestep (s)
52   
53   // ************************************************************************* //
54   

Figure 9: Example of controlDict dictionary.

The settings are controlled within the decomposeParDict dictionnary which is found in the
system folder (Figure 11). The parameter numberOfSubdomains corresponds to the number of
processors on which the simulation will be run. Once this is defined, the only parameter that
needs to be modified in this dictionary is under the simpleCoeffs entry of the dictionary. The
expression n (x y z) corresponds to the way the domain is decomposed in the x, y, and z direction,
respectively. It should be noted that it creates less problemswhen the number of processors in the
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1   /*--------------------------------*- C++ -*----------------------------------*\
2   | =========                 |                                                 |
3   | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4   |  \\    /   O peration     | Version:  2.4.x                                 |
5   |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6   |    \\/     M anipulation  |                                                 |
7   \*---------------------------------------------------------------------------*/
8   
9   // ************************************************************************* //

10   
11   zMax 15; // maximum z-extent of domain (m).
12   
13   // Initial values for the variables.
14   p0 0.0; // initial pressure (normalized by density) (m^2/s^2).
15   nut0 0.0; // initial turbulent viscosity (m^2/s).
16   nuTilda0 0.0; // initial value for nuTilda (m^2/s).
17   k0 0.24; // initial turbulent kinetic energy (m^2/s^2).
18   epsilon0 14.855; // initial turbulent dissipation energy (m^2/s^2).
19   omega0 440.15; // initial value for omega (s^-1).
20   
21   // General conditions and parameters for flow.
22   nu 1.134e-5;// continuous phase field-kinetic viscosity (m^2/s).
23   rho 1.41034; // continuous phase field density (kg/m3).
24   
25   // General parameters for the Lagrangian particles (cfr 

kinematicCloudProperties).
26   rhoPar 900; // particle density (kg m-3)
27   dm 0.0002; // mean particle diameter (m)
28   ds 0.00005; // std deviation of particle diameter (m)
29   d_max 0.0005; // maximum particle diameter (m)
30   d_min 5e-5; // minimum particle diameter (m)
31   pppMax 1000; // number of particles per parcel (splash entrainment)
32   pppMin 100; // number of particles per parcel (aerodynamic 

entrainment)
33   
34   // General parameters for fluid forcing.
35   vKC 0.41; // von Kármán constant (-)
36   Z0 0.00001; // aerodynamic surface roughness (m)
37   Ustar 0.314; // friction velocity (m s-1)
38   flowDirection (0 1 0); // direction vector of friction velocity, (x y z) 

with x+y+z=1
39   H $zMax; // vertical height for the fluid component (m)
40   noiseFactor 0.0; // create artificial turbulence (noise factor) 
41   
42   // ************************************************************************* //
43   

Figure 10: Example of the setUp file located in the simulation case.

z direction stays equall to 1. Thus, only the first two numbers in the brackets should be modified.
The multiplication of the x y z terms must yield the number set in numberOfSubdomains. Other
example, this time for 8 processors: n (4 2 1). The option preservePatches is used to put all of
the cyclic patches on the same processors. Thus, the names in the brackets should be changed
according to the names of the cyclic patches. Once the decomposition is done, directories called
processor* will be created inside the case folder, and their number corresponds to the number
of processors on which the numerical domain is decomposed.
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1   /*--------------------------------*- C++ -*----------------------------------*\
2   | =========                 |                                                 |
3   | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4   |  \\    /   O peration     | Version:  2.2.2                                 |
5   |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6   |    \\/     M anipulation  |                                                 |
7   \*---------------------------------------------------------------------------*/
8   FoamFile
9   {

10   version 2.0;
11   format ascii;
12   class dictionary;
13   location "system";
14   object decomposeParDict;
15   }
16   // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17   
18   numberOfSubdomains 20; //number of processors
19   method simple; //decomposition method
20   preservePatches (xMin xMax yMin yMax); //for cyclic BCs
21   
22   simpleCoeffs
23   {
24   n (5 4 1); //number of processors in x,y,z direction
25   delta 0.001;
26   }
27   
28   // ************************************************************************* //
29   

Figure 11: Example of a decomposition in 20 processors as shown in the decomposeParDict file.

6.5 Launching the simulation

To run the simulation on one processor, start the simulation by going in the case folder and
writing the name of your solver (after setting up the of230 environment): snowBedFoam. To run
in parallel, write the following command runParallel $application $nProc. All of these command
lines, as well as the others, can found in the right order in the Allrunp file of the case directory. In
case you want to run all the commands found in the Allrunp file, launch the following command
within the terminal: ./Allrunp.

7 During the OpenFOAM run: Check

7.1 Courant Number

The Courant (Co) number is a very good indicator to check whether a simulation is set the right
way. For example, the maximum Courant number should be less than 1 if using PISO algorithm.
Note that most of the time when the simulations blow up (very high Co) it is due to skewed cells
or other mesh issues. It should however be prevented by checking the mesh as explained above
(section 6.1.2). The mesh is the core of the simulation and care should be taken when creating
it. If the mesh is good, the simulations will for sure go without issues. If the Co number does
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not blow up after 5 seconds of simulation, this means the computations are stable and one can
expect to lead successful simulations. Usually when a simulation is about to "explode" it is
easily noticeable because the timesteps keep on getting smaller to respect the limit "maxCo" but
in one of the cells the velocity is very high so at one point the timestep just cannot compensate
to keep a low Co.

8 After the OpenFOAM run: Post-Processing

8.1 Reconstructing the simulation results

If ran in parallel, the OpenFOAM results are distributed within the time directories located
in each processor folder. In order to re-asociate them into a single time directory, run the
command reconstructPar in the terminal open within the case directory. To reconstruct the very
last timestep that was simulated, run the command reconstructPar -latestTime. To reconstruct a
given timestep XXX, run the command: reconstructPar -time XXX.

8.2 Paraview

Paraview allows to visualize the simulation results computed by OpenFOAM. To do so, create
a file named foam.foam witihin the case directory (already present in exampleCase) and run the
command paraview foam.foam in the OpenFOAM environment to visualize all the results. If the
time directories were previously reconstructed, the results appear automatically. If the results
are still distributed in the processor directories, select the option decomposed case in the options
panel. This allows to visualize the results without reconstructing everything. In case you want
to change the colors and the way the legend appears, activate the View>Color Map Editor in
Paraview. There can also be set the limits and text of the color bar legend. If you want to add
the contours of the surface topography on which the simulation was ran, select Calculator and
choose the zCoord parameter. Then, select the Contour option and erase the default settings to
set 10 for the countour lines (or whatever number of contour lines you want to appear in your
results). There are other options for post-processing in OpenFOAM, which are fully detailed on
the official OpenFOAM website.
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