'+data.sources[i].u+'
';
}
}
item.notes.push({note: sourcesNote});
item.attachments.push({
url: "https://academic.microsoft.com/#/detail/"+data.entity.id,
snapshot: false
});
//add DOIs for books, but make this robust to addition of other item types
if (item.DOI && !ZU.fieldIsValidForType("DOI", item.itemType)) {
if (item.extra) {
if (item.extra.search(/^DOI:/) == -1) {
item.extra += '\nDOI: ' + item.DOI;
}
} else {
item.extra = 'DOI: ' + item.DOI;
}
}
/*
delete data.references;
delete data.sources;
delete data.related;
delete data.citations;
Z.debug(data);
*/
item.complete();
});
}
}
/** BEGIN TEST CASES **/
var testCases = [
{
"type": "web",
"url": "https://academic.microsoft.com/#/detail/2084324324",
"items": [
{
"itemType": "journalArticle",
"title": "Out of Cite! How Reference Managers Are Taking Research to the Next Level",
"creators": [
{
"firstName": "Jason",
"lastName": "Muldrow",
"creatorType": "author"
},
{
"firstName": "Stephen",
"lastName": "Yoder",
"creatorType": "author"
}
],
"date": "2009-01-01",
"DOI": "10.1017/S1049096509090337",
"issue": 1,
"itemID": "2084324324",
"language": "en",
"libraryCatalog": "Microsoft Academic",
"pages": "167–172",
"publicationTitle": "PS Political Science & Politics",
"volume": 42,
"attachments": [
{
"snapshot": false
}
],
"tags": [
{
"tag": "Indexation"
},
{
"tag": "Political Science"
},
{
"tag": "Public Administration"
},
{
"tag": "Public Relations"
}
],
"notes": [
{
"note": "Data sources found by Microsoft Academic search engine:
https://eric.ed.gov/?id=EJ867276
http://www.journals.cambridge.org/abstract_S1049096509090337
https://www.learntechlib.org/p/70972/
"
}
],
"seeAlso": []
}
]
},
{
"type": "web",
"url": "https://academic.microsoft.com/#/detail/1479863711",
"items": [
{
"itemType": "book",
"title": "Introduction to graph theory",
"creators": [
{
"firstName": "Douglas Brent",
"lastName": "West",
"creatorType": "author"
}
],
"date": "1996-01-01",
"abstractNote": "1. Fundamental Concepts. What Is a Graph? Paths, Cycles, and Trails. Vertex Degrees and Counting. Directed Graphs. 2. Trees and Distance. Basic Properties. Spanning Trees and Enumeration. Optimization and Trees. 3. Matchings and Factors. Matchings and Covers. Algorithms and Applications. Matchings in General Graphs. 4. Connectivity and Paths. Cuts and Connectivity. k-connected Graphs. Network Flow Problems. 5. Coloring of Graphs. Vertex Colorings and Upper Bounds. Structure of k-chromatic Graphs. Enumerative Aspects. 6. Planar Graphs. Embeddings and Euler's Formula. Characterization of Planar Graphs. Parameters of Planarity. 7. Edges and Cycles. Line Graphs and Edge-Coloring. Hamiltonian Cycles. Planarity, Coloring, and Cycles. 8. Additional Topics (Optional). Perfect Graphs. Matroids. Ramsey Theory. More Extremal Problems. Random Graphs. Eigenvalues of Graphs. Appendix A: Mathematical Background. Appendix B: Optimization and Complexity. Appendix C: Hints for Selected Exercises. Appendix D: Glossary of Terms. Appendix E: Supplemental Reading. Appendix F: References. Indices.",
"itemID": "1479863711",
"language": "ja",
"libraryCatalog": "Microsoft Academic",
"attachments": [
{
"snapshot": false
}
],
"tags": [
{
"tag": "1-Planar Graph"
},
{
"tag": "Chordal Graph"
},
{
"tag": "Clique-Sum"
},
{
"tag": "Combinatorics"
},
{
"tag": "Discrete Mathematics"
},
{
"tag": "Indifference Graph"
},
{
"tag": "Mathematics"
},
{
"tag": "Strong Perfect Graph Theorem"
}
],
"notes": [
{
"note": "Data sources found by Microsoft Academic search engine:
http://ci.nii.ac.jp/ncid/BA27008641
"
}
],
"seeAlso": []
}
]
},
{
"type": "web",
"url": "https://academic.microsoft.com/#/detail/2093027094",
"items": [
{
"itemType": "conferencePaper",
"title": "Restricted delaunay triangulations and normal cycle",
"creators": [
{
"firstName": "David",
"lastName": "Cohen-Steiner",
"creatorType": "author"
},
{
"firstName": "Jean-Marie",
"lastName": "Morvan",
"creatorType": "author"
}
],
"date": "2003-06-08",
"DOI": "10.1145/777792.777839",
"abstractNote": "We address the problem of curvature estimation from sampled smooth surfaces. Building upon the theory of normal cycles, we derive a definition of the curvature tensor for polyhedral surfaces. This definition consists in a very simple and new formula. When applied to a polyhedral approximation of a smooth surface, it yields an efficient and reliable curvature estimation algorithm. Moreover, we bound the difference between the estimated curvature and the one of the smooth surface in the case of restricted Delaunay triangulations.",
"itemID": "2093027094",
"language": "en",
"libraryCatalog": "Microsoft Academic",
"pages": "312–321",
"proceedingsTitle": "Symposium on Computational Geometry",
"attachments": [
{
"snapshot": false
}
],
"tags": [
{
"tag": "Combinatorics"
},
{
"tag": "Constant-Mean-Curvature Surface"
},
{
"tag": "Curvature"
},
{
"tag": "Mathematics"
},
{
"tag": "Mean Curvature"
},
{
"tag": "Mean Curvature Flow"
},
{
"tag": "Scalar Curvature"
},
{
"tag": "Topology"
}
],
"notes": [
{
"note": "Data sources found by Microsoft Academic search engine:
https://graphics.stanford.edu/courses/cs468-03-fall/Papers/cohen_normalcycle.pdf
https://dpt-info.u-strasbg.fr/~sauvage/Recherche/GT_geom_diff/CM03.pdf
http://dblp.uni-trier.de/db/conf/compgeom/compgeom2003.html#Cohen-SteinerM03
http://dl.acm.org/citation.cfm?doid=777792.777839
http://doi.acm.org/10.1145/777792.777839
http://portal.acm.org/citation.cfm?doid=777792.777839
"
}
],
"seeAlso": []
}
]
}
]
/** END TEST CASES **/