FS2023-dashboard-design/dashboard7/main.py

256 lines
9.7 KiB
Python
Raw Normal View History

import math
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import dash_bootstrap_components as dbc
from sklearn.datasets import make_blobs
# new: more than one plot in a callback
# new: one plot as an input for another plot
# new: plotly go object
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
df = pd.DataFrame(
{
"y": np.random.normal(loc=0, scale=10, size=1000),
"x": np.random.normal(loc=10, scale=2, size=1000),
}
)
# define cluster colors
2023-06-03 13:13:03 +02:00
# https://loading.io/color/feature/Spectral-10/
COLORS = {
"0": "#9e0142",
"1": "#d53e4f",
"2": "#f46d43",
"3": "#fdae61",
"4": "#fee08b",
"5": "#e6f598",
"6": "#abdda4",
"7": "#66c2a5",
"8": "#3288bd",
"9": "#5e4fa2",
}
X, y = make_blobs(n_samples=300, centers=3, n_features=2, random_state=0)
cluster_df = pd.DataFrame(data=X, columns=["X", "Y"])
cluster_df["cluster"] = [str(i) for i in y]
app.layout = html.Div(
[
html.Div([html.H1("Dashboard 4")], className="header"),
html.Div(
[
dcc.Tabs(
id="tabs",
children=[
dcc.Tab(
label="Tab One",
id="tab_1_graphs",
children=[
html.Div(
[
dbc.Row(
[
dbc.Col(
[
dcc.Dropdown(
options=[
"red",
"green",
"blue",
],
value="red",
id="color",
multi=False,
)
],
width=6,
),
dbc.Col(
[
dcc.Slider(
min=math.floor(
df["y"].min()
),
max=math.ceil(
df["y"].max()
),
id="min_value",
)
],
width=6,
),
]
),
dbc.Row(
[
dbc.Col(
[dcc.Graph(id="graph_1")], width=6
),
dbc.Col(
[dcc.Graph(id="graph_2")], width=6
),
]
),
2023-06-03 13:35:48 +02:00
dbc.Row(
[
dbc.Col(width=6),
dbc.Col(
[dcc.Graph(id="graph_69")], width=6
),
]
),
],
className="tab_content",
),
],
),
dcc.Tab(
label="Tab Two",
id="tab_2_graphs",
children=[
html.Div(
[
2023-06-03 13:13:03 +02:00
dbc.Row(
[
dbc.Col(
[
dcc.Slider(
1,
10,
1,
value=3,
id="slider_1",
)
]
),
]
),
dbc.Row(
[
dbc.Col(
[dcc.Graph(id="graph_3")], width=8
),
dbc.Col(
[dcc.Graph(id="graph_4")], width=4
),
]
2023-06-03 13:13:03 +02:00
),
],
className="tab_content",
)
],
),
],
)
],
className="content",
),
]
)
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
def update_graph_1(dropdown_value_color):
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
fig.update_layout(template="plotly_white")
return fig
@app.callback(Output("graph_2", "figure"), Input("min_value", "value"))
def update_graph_2(min_value):
if min_value:
dff = df[df["y"] > min_value]
else:
dff = df
fig = px.scatter(dff, x="x", y="y")
2023-06-03 13:35:48 +02:00
fig.update_layout(template="plotly_white")
return fig
2023-06-03 13:36:23 +02:00
# 7a
2023-06-03 13:35:48 +02:00
@app.callback(Output("graph_69", "figure"), Input("graph_2", "relayoutData"))
def update_graph_2(selected_data):
if selected_data is None or (
isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data
):
dff = df
else:
dff = df[
(df["x"] >= selected_data.get("xaxis.range[0]"))
& (df["x"] <= selected_data.get("xaxis.range[1]"))
& (df["y"] >= selected_data.get("yaxis.range[0]"))
& (df["y"] <= selected_data.get("yaxis.range[1]"))
]
fig = px.scatter(dff, x="x", y="y")
fig.update_layout(template="plotly_white")
return fig
@app.callback(
Output("graph_3", "figure"),
Output("graph_4", "figure"),
Input("graph_3", "relayoutData"),
2023-06-03 13:13:03 +02:00
Input("slider_1", "value"),
)
2023-06-03 13:13:03 +02:00
def update_graph_3_and_4(selected_data, sliderValue):
2023-06-03 13:36:23 +02:00
## 7b
2023-06-03 13:13:03 +02:00
# forcing update of x, y and cluster_df with the proper am
X, y = make_blobs(
n_samples=100 * sliderValue, centers=sliderValue, n_features=2, random_state=0
)
cluster_df = pd.DataFrame(data=X, columns=["X", "Y"])
cluster_df["cluster"] = [str(i) for i in y]
if selected_data is None or (
isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data
):
cluster_dff = cluster_df
else:
cluster_dff = cluster_df[
(cluster_df["X"] >= selected_data.get("xaxis.range[0]"))
& (cluster_df["X"] <= selected_data.get("xaxis.range[1]"))
& (cluster_df["Y"] >= selected_data.get("yaxis.range[0]"))
& (cluster_df["Y"] <= selected_data.get("yaxis.range[1]"))
]
fig3 = px.scatter(
cluster_dff,
x="X",
y="Y",
color="cluster",
color_discrete_map=COLORS,
2023-06-03 13:13:03 +02:00
category_orders={"cluster": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]},
height=750,
)
fig3.update_layout(template="plotly_white", coloraxis_showscale=False)
fig3.update_traces(marker=dict(size=8))
group_counts = cluster_dff[["cluster", "X"]].groupby("cluster").count()
fig4 = go.Figure(
data=[
go.Bar(
x=group_counts.index,
y=group_counts["X"],
marker_color=[COLORS.get(i) for i in group_counts.index],
)
]
)
fig4.update_layout(
height=750,
template="plotly_white",
title="<b>Counts per cluster</b>",
xaxis_title="cluster",
title_font_size=25,
)
return fig3, fig4
if __name__ == "__main__":
app.run_server(debug=True, port=8012)