41 lines
1.4 KiB
Python
41 lines
1.4 KiB
Python
|
import math
|
||
|
from dash import Dash, dcc, html, Input, Output
|
||
|
import plotly.express as px
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import dash_bootstrap_components as dbc
|
||
|
|
||
|
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||
|
|
||
|
# generate random normal distributed data for x and y
|
||
|
# and store it in a pandas DataFrame
|
||
|
|
||
|
df = pd.DataFrame({'y': np.random.normal(loc=0, scale=10, size=1000),
|
||
|
'x': np.random.normal(loc=10, scale=2, size=1000)})
|
||
|
|
||
|
app.layout = html.Div([html.H1("Dashboard 2"),
|
||
|
dbc.Row([dbc.Col([dcc.Dropdown(options=['red', 'green', 'blue'], value='red', id='color', multi=False)], width=6),
|
||
|
dbc.Col([dcc.Slider(min=math.floor(df['y'].min()), max=math.ceil(df['y'].max()), id="min_value")
|
||
|
], width=6)
|
||
|
]),
|
||
|
dbc.Row([dbc.Col([dcc.Graph(id="graph_1")], width=6),
|
||
|
dbc.Col([dcc.Graph(id="graph_2")], width=6)
|
||
|
])], className="m-4")
|
||
|
|
||
|
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
|
||
|
|
||
|
def update_graph_1(dropdown_value_color):
|
||
|
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
|
||
|
fig.update_layout()
|
||
|
return fig
|
||
|
|
||
|
@app.callback(Output("graph_2", "figure"), Input("min_value", "value"))
|
||
|
|
||
|
def update_graph_2(min_value):
|
||
|
dff = df[df['y']> min_value]
|
||
|
fig = px.scatter(dff, x='x', y='y')
|
||
|
fig.update_layout()
|
||
|
return fig
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
app.run_server(debug=True, port=8000)
|