FS2023-dashboard-design/dashboard8/main.py

312 lines
13 KiB
Python
Raw Normal View History

2023-06-03 13:44:15 +02:00
import math
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import dash_bootstrap_components as dbc
from sklearn.datasets import make_blobs
# New: Density heatmap (2 columns) as third plot on tab 2
# with color and resolution options
# New: Everything with inline style and bootstrap (no CSS)
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# generate random normal distributed data for x and y
# and store it in a Pandas DataFrame (for plot 1,2, and 5)
np.random.seed(seed=8)
2023-06-03 13:45:07 +02:00
df = pd.DataFrame(
{
"y": np.random.normal(loc=0, scale=10, size=1000),
"x": np.random.normal(loc=10, scale=2, size=1000),
}
)
2023-06-03 13:44:15 +02:00
# define cluster colors
2023-06-03 13:45:07 +02:00
COLORS = {"0": "red", "1": "blue", "2": "grey"}
2023-06-03 13:44:15 +02:00
# generic cluster data (for plot 3 and 4)
2023-06-03 13:45:07 +02:00
X, y = make_blobs(
n_samples=7500, centers=3, n_features=2, random_state=0, cluster_std=0.75
)
2023-06-03 13:44:15 +02:00
cluster_df = pd.DataFrame(data=X, columns=["X", "Y"])
2023-06-03 13:45:07 +02:00
cluster_df["cluster"] = [str(i) for i in y]
app.layout = html.Div(
[
html.Div([html.H1("Dashboard 6")], style={"margin": "10px 25px 25px 25px"}),
html.Div(
[
dcc.Tabs(
id="tabs",
children=[
dcc.Tab(
label="Tab One",
children=[
html.Div(
[
dbc.Row(
[
dbc.Col(
[
dcc.Dropdown(
options=[
"red",
"green",
"blue",
],
value="red",
id="color",
multi=False,
)
],
width=6,
),
dbc.Col(
[
dcc.Slider(
min=math.floor(
df["y"].min()
),
max=math.ceil(
df["y"].max()
),
id="min_value",
)
],
width=6,
),
]
),
dbc.Row(
[
dbc.Col(
[dcc.Graph(id="graph_1")], width=6
),
dbc.Col(
[dcc.Graph(id="graph_2")], width=6
),
]
),
],
style={"margin": "100px 25px 25px 25px"},
),
],
),
dcc.Tab(
label="Tab Two",
id="tab_2_graphs",
children=[
html.Div(
[
dbc.Row(
[
dbc.Col(
[dcc.Graph(id="graph_3")], width=8
),
dbc.Col(
[dcc.Graph(id="graph_4")], width=4
),
]
),
dbc.Row(
[
dbc.Col(
html.Div(
[
dbc.Label(
"Number of bins:",
html_for="graph_5_nbins",
),
dcc.Dropdown(
options=[
str(i)
for i in range(
5, 100, 5
)
],
value="40",
id="graph_5_nbins",
multi=False,
),
]
),
width={"size": 3},
),
dbc.Col(
html.Div(
[
dbc.Label(
"Color:",
html_for="graph_5_color",
),
dcc.Dropdown(
options=[
"Viridis",
"Magma",
"Hot",
"GnBu",
"Greys",
],
value="Viridis",
id="graph_5_color",
multi=False,
),
]
),
width={"size": 3, "offset": 1},
),
dbc.Col(
html.Div(
[
dbc.Label(
"Separated for Cluster:",
html_for="graph_5_separated",
),
dcc.RadioItems(
options=["Yes", "No"],
value="No",
id="graph_5_separated",
),
]
),
width={"size": 3, "offset": 1},
),
]
),
dbc.Row(
[
dbc.Col(
[dcc.Graph(id="graph_5")], width=12
)
]
),
],
style={"margin": "10px 25px 25px 25px"},
)
],
),
],
)
],
style={"margin": "10px 25px 25px 25px"},
),
]
)
2023-06-03 13:44:15 +02:00
def update_selected_data(selected_data):
2023-06-03 13:45:07 +02:00
if selected_data is None or (
isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data
):
cluster_dff = cluster_df
2023-06-03 13:44:15 +02:00
else:
2023-06-03 13:45:07 +02:00
cluster_dff = cluster_df[
(cluster_df["X"] >= selected_data.get("xaxis.range[0]"))
& (cluster_df["X"] <= selected_data.get("xaxis.range[1]"))
& (cluster_df["Y"] >= selected_data.get("yaxis.range[0]"))
& (cluster_df["Y"] <= selected_data.get("yaxis.range[1]"))
]
2023-06-03 13:44:15 +02:00
return cluster_dff
2023-06-03 13:45:07 +02:00
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
2023-06-03 13:44:15 +02:00
def update_graph_1(dropdown_value_color):
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
fig.update_layout(template="plotly_white")
return fig
2023-06-03 13:45:07 +02:00
@app.callback(Output("graph_2", "figure"), Input("min_value", "value"))
2023-06-03 13:44:15 +02:00
def update_graph_2(min_value):
if min_value:
2023-06-03 13:45:07 +02:00
dff = df[df["y"] > min_value]
2023-06-03 13:44:15 +02:00
else:
dff = df
2023-06-03 13:45:07 +02:00
fig = px.scatter(dff, x="x", y="y")
2023-06-03 13:44:15 +02:00
fig.update_layout(template="plotly_white")
return fig
2023-06-03 13:45:07 +02:00
@app.callback(
Output("graph_3", "figure"),
Output("graph_4", "figure"),
Input("graph_3", "relayoutData"),
)
2023-06-03 13:44:15 +02:00
def update_graph_3_and_4(selected_data):
PLOT_HEIGHT = 400
cluster_dff = update_selected_data(selected_data=selected_data)
2023-06-03 13:45:07 +02:00
fig3 = px.scatter(
cluster_dff,
x="X",
y="Y",
color="cluster",
color_discrete_map=COLORS,
category_orders={"cluster": ["0", "1", "2"]},
)
fig3.update_layout(
height=PLOT_HEIGHT, template="plotly_white", coloraxis_showscale=False
)
2023-06-03 13:44:15 +02:00
fig3.update_traces(marker=dict(size=8))
2023-06-03 13:45:07 +02:00
group_counts = cluster_dff[["cluster", "X"]].groupby("cluster").count()
fig4 = go.Figure(
data=[
go.Bar(
x=group_counts.index,
y=group_counts["X"],
marker_color=[COLORS.get(i) for i in group_counts.index],
)
]
)
fig4.update_layout(
height=PLOT_HEIGHT,
template="plotly_white",
title="<b>Counts per cluster</b>",
xaxis_title="cluster",
title_font_size=25,
)
2023-06-03 13:44:15 +02:00
return fig3, fig4
2023-06-03 13:45:07 +02:00
@app.callback(
Output("graph_5", "figure"),
Input("graph_5_nbins", "value"),
Input("graph_5_color", "value"),
Input("graph_5_separated", "value"),
Input("graph_3", "relayoutData"),
)
2023-06-03 13:44:15 +02:00
def update_graph_5(nbins, color, separated, selected_data):
cluster_dff = update_selected_data(selected_data=selected_data)
2023-06-03 13:45:07 +02:00
fig = px.density_heatmap(
cluster_dff,
x="X",
y="Y",
nbinsx=int(nbins),
nbinsy=int(nbins),
color_continuous_scale=color,
facet_col=None if separated == "No" else "cluster",
category_orders={"cluster": ["0", "1", "2"]},
)
2023-06-03 13:44:15 +02:00
fig.update_layout(template="plotly_white")
return fig
2023-06-03 13:45:07 +02:00
if __name__ == "__main__":
app.run_server(debug=True, port=8014)