ADDED: Dashboard 4 and removed typo from example
parent
e55e2b9b97
commit
2dab2139ce
|
@ -0,0 +1,194 @@
|
|||
import math
|
||||
from dash import Dash, dcc, html, Input, Output
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import dash_bootstrap_components as dbc
|
||||
from sklearn.datasets import make_blobs
|
||||
|
||||
# new: more than one plot in a callback
|
||||
# new: one plot as an input for another plot
|
||||
# new: plotly go object
|
||||
|
||||
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"y": np.random.normal(loc=0, scale=10, size=1000),
|
||||
"x": np.random.normal(loc=10, scale=2, size=1000),
|
||||
}
|
||||
)
|
||||
|
||||
# define cluster colors
|
||||
|
||||
COLORS = {"0": "red", "1": "blue", "2": "grey"}
|
||||
|
||||
X, y = make_blobs(n_samples=100, centers=3, n_features=2, random_state=0)
|
||||
|
||||
cluster_df = pd.DataFrame(data=X, columns=["X", "Y"])
|
||||
cluster_df["cluster"] = [str(i) for i in y]
|
||||
|
||||
app.layout = html.Div(
|
||||
[
|
||||
html.Div([html.H1("Dashboard 4")], className="header"),
|
||||
html.Div(
|
||||
[
|
||||
dcc.Tabs(
|
||||
id="tabs",
|
||||
children=[
|
||||
dcc.Tab(
|
||||
label="Tab One",
|
||||
id="tab_1_graphs",
|
||||
children=[
|
||||
html.Div(
|
||||
[
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dcc.Dropdown(
|
||||
options=[
|
||||
"red",
|
||||
"green",
|
||||
"blue",
|
||||
],
|
||||
value="red",
|
||||
id="color",
|
||||
multi=False,
|
||||
)
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dcc.Slider(
|
||||
min=math.floor(
|
||||
df["y"].min()
|
||||
),
|
||||
max=math.ceil(
|
||||
df["y"].max()
|
||||
),
|
||||
id="min_value",
|
||||
)
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_1")], width=6
|
||||
),
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_2")], width=6
|
||||
),
|
||||
]
|
||||
),
|
||||
],
|
||||
className="tab_content",
|
||||
),
|
||||
],
|
||||
),
|
||||
dcc.Tab(
|
||||
label="Tab Two",
|
||||
id="tab_2_graphs",
|
||||
children=[
|
||||
html.Div(
|
||||
[
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_3")], width=8
|
||||
),
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_4")], width=4
|
||||
),
|
||||
]
|
||||
)
|
||||
],
|
||||
className="tab_content",
|
||||
)
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
],
|
||||
className="content",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
|
||||
def update_graph_1(dropdown_value_color):
|
||||
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
|
||||
fig.update_layout(template="plotly_white")
|
||||
return fig
|
||||
|
||||
|
||||
@app.callback(Output("graph_2", "figure"), Input("min_value", "value"))
|
||||
def update_graph_2(min_value):
|
||||
if min_value:
|
||||
dff = df[df["y"] > min_value]
|
||||
else:
|
||||
dff = df
|
||||
fig = px.scatter(dff, x="x", y="y")
|
||||
fig.update_layout(template="plotly_white")
|
||||
return fig
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output("graph_3", "figure"),
|
||||
Output("graph_4", "figure"),
|
||||
Input("graph_3", "relayoutData"),
|
||||
)
|
||||
def update_graph_3_and_4(selected_data):
|
||||
if selected_data is None or (
|
||||
isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data
|
||||
):
|
||||
cluster_dff = cluster_df
|
||||
else:
|
||||
cluster_dff = cluster_df[
|
||||
(cluster_df["X"] >= selected_data.get("xaxis.range[0]"))
|
||||
& (cluster_df["X"] <= selected_data.get("xaxis.range[1]"))
|
||||
& (cluster_df["Y"] >= selected_data.get("yaxis.range[0]"))
|
||||
& (cluster_df["Y"] <= selected_data.get("yaxis.range[1]"))
|
||||
]
|
||||
|
||||
fig3 = px.scatter(
|
||||
cluster_dff,
|
||||
x="X",
|
||||
y="Y",
|
||||
color="cluster",
|
||||
color_discrete_map=COLORS,
|
||||
category_orders={"cluster": ["0", "1", "2"]},
|
||||
height=750,
|
||||
)
|
||||
fig3.update_layout(template="plotly_white", coloraxis_showscale=False)
|
||||
fig3.update_traces(marker=dict(size=8))
|
||||
|
||||
group_counts = cluster_dff[["cluster", "X"]].groupby("cluster").count()
|
||||
|
||||
fig4 = go.Figure(
|
||||
data=[
|
||||
go.Bar(
|
||||
x=group_counts.index,
|
||||
y=group_counts["X"],
|
||||
marker_color=[COLORS.get(i) for i in group_counts.index],
|
||||
)
|
||||
]
|
||||
)
|
||||
fig4.update_layout(
|
||||
height=750,
|
||||
template="plotly_white",
|
||||
title="<b>Counts per cluster</b>",
|
||||
xaxis_title="cluster",
|
||||
title_font_size=25,
|
||||
)
|
||||
return fig3, fig4
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run_server(debug=True, port=8012)
|
|
@ -0,0 +1,25 @@
|
|||
blinker==1.6.2
|
||||
click==8.1.3
|
||||
dash==2.9.3
|
||||
dash-bootstrap-components==1.4.1
|
||||
dash-core-components==2.0.0
|
||||
dash-html-components==2.0.0
|
||||
dash-table==5.0.0
|
||||
Flask==2.3.2
|
||||
itsdangerous==2.1.2
|
||||
Jinja2==3.1.2
|
||||
joblib==1.2.0
|
||||
MarkupSafe==2.1.2
|
||||
numpy==1.24.3
|
||||
packaging==23.1
|
||||
pandas==2.0.1
|
||||
plotly==5.14.1
|
||||
python-dateutil==2.8.2
|
||||
pytz==2023.3
|
||||
scikit-learn==1.2.2
|
||||
scipy==1.10.1
|
||||
six==1.16.0
|
||||
tenacity==8.2.2
|
||||
threadpoolctl==3.1.0
|
||||
tzdata==2023.3
|
||||
Werkzeug==2.3.4
|
Loading…
Reference in New Issue