ADDED: Default code from Moodle
https://moodle.fhgr.ch/pluginfile.php/887638/mod_resource/content/1/Dashboard2_Buch_Code.txt https://moodle.fhgr.ch/pluginfile.php/887639/mod_resource/content/1/Dashboard3_Buch_Code.txt https://moodle.fhgr.ch/pluginfile.php/887640/mod_resource/content/1/Dashboard3_Buch_Code.cssmain
parent
ef0b2de5e3
commit
654ffafd83
|
@ -0,0 +1,41 @@
|
|||
import math
|
||||
from dash import Dash, dcc, html, Input, Output
|
||||
import plotly.express as px
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
|
||||
# generate random normal distributed data for x and y
|
||||
# and store it in a pandas DataFrame
|
||||
|
||||
df = pd.DataFrame({'y': np.random.normal(loc=0, scale=10, size=1000),
|
||||
'x': np.random.normal(loc=10, scale=2, size=1000)})
|
||||
|
||||
app.layout = html.Div([html.H1("Dashboard 2"),
|
||||
dbc.Row([dbc.Col([dcc.Dropdown(options=['red', 'green', 'blue'], value='red', id='color', multi=False)], width=6),
|
||||
dbc.Col([dcc.Slider(min=math.floor(df['y'].min()), max=math.ceil(df['y'].max()), id="min_value")
|
||||
], width=6)
|
||||
]),
|
||||
dbc.Row([dbc.Col([dcc.Graph(id="graph_1")], width=6),
|
||||
dbc.Col([dcc.Graph(id="graph_2")], width=6)
|
||||
])], className="m-4")
|
||||
|
||||
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
|
||||
|
||||
def update_graph_1(dropdown_value_color):
|
||||
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
|
||||
fig.update_layout()
|
||||
return fig
|
||||
|
||||
@app.callback(Output("graph_2", "figure"), Input("min_value", "value"))
|
||||
|
||||
def update_graph_2(min_value):
|
||||
dff = df[df['y']> min_value]
|
||||
fig = px.scatter(dff, x='x', y='y')
|
||||
fig.update_layout()
|
||||
return fig
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run_server(debug=True, port=8000)
|
|
@ -0,0 +1,12 @@
|
|||
.header {
|
||||
margin: 0px 25px 25px 25px;
|
||||
/* margin-top margin-right margin-bottom margin-left*/
|
||||
}
|
||||
|
||||
.content {
|
||||
margin: 0px 25px 25px 25px;
|
||||
}
|
||||
|
||||
.tab_content {
|
||||
margin-top: 60px;
|
||||
}
|
|
@ -0,0 +1,41 @@
|
|||
import math
|
||||
from dash import Dash, dcc, html, Input, Output
|
||||
import plotly.express as px
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
# new: plotly template="plotly_white", https://plotly.com/python/templates/
|
||||
|
||||
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
|
||||
df = pd.DataFrame({'y': np.random.normal(loc=0, scale=10, size=1000), 'x': np.random.normal(loc=10, scale=2, size=1000)})
|
||||
|
||||
app.layout = html.Div([html.Div([html.H1("Dashboard 3")], className="header"), html.Div([dcc.Tabs(id="tabs", children=[
|
||||
dcc.Tab(label='Tab One', id="tab_1_graphs", children=[html.Div([
|
||||
dbc.Row([dbc.Col([dcc.Dropdown(options=['red','green','blue'], value='red', id='color', multi=False)], width=6),
|
||||
dbc.Col([dcc.Slider(min=math.floor(df['y'].min()),max=math.ceil(df['y'].max()),id="min_value")], width=6)]),
|
||||
dbc.Row([dbc.Col([dcc.Graph(id="graph_1")],width=6),
|
||||
dbc.Col([dcc.Graph(id="graph_2")],width=6)])], className="tab_content"),]),
|
||||
dcc.Tab(label='Tab Two', id="tab_2_graphs",children=[html.Div([],className="tab_content")]),])], className="content")])
|
||||
|
||||
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
|
||||
|
||||
def update_graph_1(dropdown_value_color):
|
||||
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
|
||||
fig.update_layout(template="plotly_white")
|
||||
return fig
|
||||
|
||||
@app.callback(Output("graph_2", "figure"),Input("min_value", "value"))
|
||||
|
||||
def update_graph_2(min_value):
|
||||
if min_value:
|
||||
dff = df[df['y'] > min_value]
|
||||
else:
|
||||
dff = df
|
||||
fig = px.scatter(dff, x='x', y='y')
|
||||
fig.update_layout(template="plotly_white")
|
||||
return fig
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run_server(debug=True, port=8000)
|
Loading…
Reference in New Issue