8: Formatted
parent
43f5277b75
commit
db9ea8197f
|
@ -19,104 +19,293 @@ app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
|||
|
||||
np.random.seed(seed=8)
|
||||
|
||||
df = pd.DataFrame({'y': np.random.normal(loc=0, scale=10, size=1000),
|
||||
'x': np.random.normal(loc=10, scale=2, size=1000)})
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"y": np.random.normal(loc=0, scale=10, size=1000),
|
||||
"x": np.random.normal(loc=10, scale=2, size=1000),
|
||||
}
|
||||
)
|
||||
|
||||
# define cluster colors
|
||||
|
||||
COLORS = {'0': "red", '1': "blue", '2': "grey"}
|
||||
COLORS = {"0": "red", "1": "blue", "2": "grey"}
|
||||
|
||||
# generic cluster data (for plot 3 and 4)
|
||||
|
||||
X, y = make_blobs(n_samples=7500, centers=3, n_features=2, random_state=0, cluster_std=0.75)
|
||||
X, y = make_blobs(
|
||||
n_samples=7500, centers=3, n_features=2, random_state=0, cluster_std=0.75
|
||||
)
|
||||
|
||||
cluster_df = pd.DataFrame(data=X, columns=["X", "Y"])
|
||||
cluster_df['cluster'] = [str(i) for i in y]
|
||||
cluster_df["cluster"] = [str(i) for i in y]
|
||||
|
||||
app.layout = html.Div(
|
||||
[
|
||||
html.Div([html.H1("Dashboard 6")], style={"margin": "10px 25px 25px 25px"}),
|
||||
html.Div(
|
||||
[
|
||||
dcc.Tabs(
|
||||
id="tabs",
|
||||
children=[
|
||||
dcc.Tab(
|
||||
label="Tab One",
|
||||
children=[
|
||||
html.Div(
|
||||
[
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dcc.Dropdown(
|
||||
options=[
|
||||
"red",
|
||||
"green",
|
||||
"blue",
|
||||
],
|
||||
value="red",
|
||||
id="color",
|
||||
multi=False,
|
||||
)
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dcc.Slider(
|
||||
min=math.floor(
|
||||
df["y"].min()
|
||||
),
|
||||
max=math.ceil(
|
||||
df["y"].max()
|
||||
),
|
||||
id="min_value",
|
||||
)
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_1")], width=6
|
||||
),
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_2")], width=6
|
||||
),
|
||||
]
|
||||
),
|
||||
],
|
||||
style={"margin": "100px 25px 25px 25px"},
|
||||
),
|
||||
],
|
||||
),
|
||||
dcc.Tab(
|
||||
label="Tab Two",
|
||||
id="tab_2_graphs",
|
||||
children=[
|
||||
html.Div(
|
||||
[
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_3")], width=8
|
||||
),
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_4")], width=4
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
html.Div(
|
||||
[
|
||||
dbc.Label(
|
||||
"Number of bins:",
|
||||
html_for="graph_5_nbins",
|
||||
),
|
||||
dcc.Dropdown(
|
||||
options=[
|
||||
str(i)
|
||||
for i in range(
|
||||
5, 100, 5
|
||||
)
|
||||
],
|
||||
value="40",
|
||||
id="graph_5_nbins",
|
||||
multi=False,
|
||||
),
|
||||
]
|
||||
),
|
||||
width={"size": 3},
|
||||
),
|
||||
dbc.Col(
|
||||
html.Div(
|
||||
[
|
||||
dbc.Label(
|
||||
"Color:",
|
||||
html_for="graph_5_color",
|
||||
),
|
||||
dcc.Dropdown(
|
||||
options=[
|
||||
"Viridis",
|
||||
"Magma",
|
||||
"Hot",
|
||||
"GnBu",
|
||||
"Greys",
|
||||
],
|
||||
value="Viridis",
|
||||
id="graph_5_color",
|
||||
multi=False,
|
||||
),
|
||||
]
|
||||
),
|
||||
width={"size": 3, "offset": 1},
|
||||
),
|
||||
dbc.Col(
|
||||
html.Div(
|
||||
[
|
||||
dbc.Label(
|
||||
"Separated for Cluster:",
|
||||
html_for="graph_5_separated",
|
||||
),
|
||||
dcc.RadioItems(
|
||||
options=["Yes", "No"],
|
||||
value="No",
|
||||
id="graph_5_separated",
|
||||
),
|
||||
]
|
||||
),
|
||||
width={"size": 3, "offset": 1},
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[dcc.Graph(id="graph_5")], width=12
|
||||
)
|
||||
]
|
||||
),
|
||||
],
|
||||
style={"margin": "10px 25px 25px 25px"},
|
||||
)
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
],
|
||||
style={"margin": "10px 25px 25px 25px"},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
app.layout = html.Div([html.Div([html.H1("Dashboard 6")], style={'margin': '10px 25px 25px 25px'}), html.Div([dcc.Tabs(id="tabs", children=[
|
||||
dcc.Tab(label='Tab One', children=[html.Div([
|
||||
dbc.Row([dbc.Col([dcc.Dropdown(options=['red', 'green', 'blue'], value='red', id='color', multi=False)], width=6),
|
||||
dbc.Col([dcc.Slider(min=math.floor(df['y'].min()), max=math.ceil(df['y'].max()), id="min_value")], width=6)]),
|
||||
dbc.Row([dbc.Col([dcc.Graph(id="graph_1")],width=6),
|
||||
dbc.Col([dcc.Graph(id="graph_2")],width=6)])], style={"margin": "100px 25px 25px 25px"}),]),
|
||||
dcc.Tab(label='Tab Two', id="tab_2_graphs", children=[html.Div([
|
||||
dbc.Row([dbc.Col([dcc.Graph(id="graph_3")], width=8),
|
||||
dbc.Col([dcc.Graph(id="graph_4")], width=4)]),
|
||||
dbc.Row([dbc.Col(html.Div([dbc.Label("Number of bins:", html_for="graph_5_nbins"),
|
||||
dcc.Dropdown(options= [str(i) for i in range(5, 100, 5)], value='40', id='graph_5_nbins', multi=False)]),width={"size": 3},),
|
||||
dbc.Col(html.Div([dbc.Label("Color:", html_for="graph_5_color"),
|
||||
dcc.Dropdown(options=["Viridis", "Magma", "Hot", "GnBu", "Greys"], value='Viridis', id='graph_5_color', multi=False)]),width={"size": 3,"offset": 1},),
|
||||
dbc.Col(html.Div([dbc.Label("Separated for Cluster:", html_for="graph_5_separated"),
|
||||
dcc.RadioItems(options=["Yes","No"], value='No', id='graph_5_separated')]),width={"size": 3,"offset": 1},)]),
|
||||
dbc.Row([dbc.Col([dcc.Graph(id="graph_5")], width=12)])], style={"margin": "10px 25px 25px 25px"})]),])], style={"margin": "10px 25px 25px 25px"})])
|
||||
|
||||
def update_selected_data(selected_data):
|
||||
if selected_data is None or
|
||||
(isinstance(selected_data, dict) and
|
||||
'xaxis.range[0]' not in selected_data):
|
||||
cluster_dff = cluster_df
|
||||
if selected_data is None or (
|
||||
isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data
|
||||
):
|
||||
cluster_dff = cluster_df
|
||||
else:
|
||||
cluster_dff =
|
||||
cluster_df[
|
||||
(cluster_df['X'] >=
|
||||
selected_data.get('xaxis.range[0]')) &
|
||||
(cluster_df['X'] <=
|
||||
selected_data.get('xaxis.range[1]')) &
|
||||
(cluster_df['Y'] >=
|
||||
selected_data.get('yaxis.range[0]')) &
|
||||
(cluster_df['Y'] <=
|
||||
selected_data.get('yaxis.range[1]'))]
|
||||
cluster_dff = cluster_df[
|
||||
(cluster_df["X"] >= selected_data.get("xaxis.range[0]"))
|
||||
& (cluster_df["X"] <= selected_data.get("xaxis.range[1]"))
|
||||
& (cluster_df["Y"] >= selected_data.get("yaxis.range[0]"))
|
||||
& (cluster_df["Y"] <= selected_data.get("yaxis.range[1]"))
|
||||
]
|
||||
return cluster_dff
|
||||
|
||||
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
|
||||
|
||||
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
|
||||
def update_graph_1(dropdown_value_color):
|
||||
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
|
||||
fig.update_layout(template="plotly_white")
|
||||
return fig
|
||||
|
||||
@app.callback(Output("graph_2", "figure"), Input("min_value", "value"))
|
||||
|
||||
@app.callback(Output("graph_2", "figure"), Input("min_value", "value"))
|
||||
def update_graph_2(min_value):
|
||||
if min_value:
|
||||
dff = df[df['y'] > min_value]
|
||||
dff = df[df["y"] > min_value]
|
||||
else:
|
||||
dff = df
|
||||
|
||||
fig = px.scatter(dff, x='x', y='y')
|
||||
fig = px.scatter(dff, x="x", y="y")
|
||||
fig.update_layout(template="plotly_white")
|
||||
return fig
|
||||
|
||||
@app.callback(Output("graph_3", "figure"), Output("graph_4", "figure"), Input("graph_3", "relayoutData"))
|
||||
|
||||
@app.callback(
|
||||
Output("graph_3", "figure"),
|
||||
Output("graph_4", "figure"),
|
||||
Input("graph_3", "relayoutData"),
|
||||
)
|
||||
def update_graph_3_and_4(selected_data):
|
||||
|
||||
PLOT_HEIGHT = 400
|
||||
|
||||
cluster_dff = update_selected_data(selected_data=selected_data)
|
||||
|
||||
fig3 = px.scatter(cluster_dff, x="X", y="Y", color="cluster", color_discrete_map=COLORS, category_orders={"cluster": ["0", "1", "2"]})
|
||||
fig3 = px.scatter(
|
||||
cluster_dff,
|
||||
x="X",
|
||||
y="Y",
|
||||
color="cluster",
|
||||
color_discrete_map=COLORS,
|
||||
category_orders={"cluster": ["0", "1", "2"]},
|
||||
)
|
||||
|
||||
fig3.update_layout(height=PLOT_HEIGHT, template="plotly_white", coloraxis_showscale=False)
|
||||
fig3.update_layout(
|
||||
height=PLOT_HEIGHT, template="plotly_white", coloraxis_showscale=False
|
||||
)
|
||||
fig3.update_traces(marker=dict(size=8))
|
||||
|
||||
group_counts = cluster_dff[['cluster', 'X']].groupby('cluster').count()
|
||||
group_counts = cluster_dff[["cluster", "X"]].groupby("cluster").count()
|
||||
|
||||
fig4 = go.Figure(data=[go.Bar(x=group_counts.index, y=group_counts['X'], marker_color=[COLORS.get(i) for i in group_counts.index])])
|
||||
fig4 = go.Figure(
|
||||
data=[
|
||||
go.Bar(
|
||||
x=group_counts.index,
|
||||
y=group_counts["X"],
|
||||
marker_color=[COLORS.get(i) for i in group_counts.index],
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
fig4.update_layout(height=PLOT_HEIGHT, template="plotly_white", title="<b>Counts per cluster</b>", xaxis_title="cluster", title_font_size=25)
|
||||
fig4.update_layout(
|
||||
height=PLOT_HEIGHT,
|
||||
template="plotly_white",
|
||||
title="<b>Counts per cluster</b>",
|
||||
xaxis_title="cluster",
|
||||
title_font_size=25,
|
||||
)
|
||||
|
||||
return fig3, fig4
|
||||
|
||||
@app.callback(Output("graph_5", "figure"), Input("graph_5_nbins", "value"), Input("graph_5_color", "value"), Input("graph_5_separated", "value"), Input("graph_3", "relayoutData"),)
|
||||
|
||||
@app.callback(
|
||||
Output("graph_5", "figure"),
|
||||
Input("graph_5_nbins", "value"),
|
||||
Input("graph_5_color", "value"),
|
||||
Input("graph_5_separated", "value"),
|
||||
Input("graph_3", "relayoutData"),
|
||||
)
|
||||
def update_graph_5(nbins, color, separated, selected_data):
|
||||
cluster_dff = update_selected_data(selected_data=selected_data)
|
||||
|
||||
fig = px.density_heatmap(cluster_dff, x="X", y="Y", nbinsx=int(nbins), nbinsy=int(nbins), color_continuous_scale=color, facet_col=None if separated == "No" else "cluster",
|
||||
category_orders={"cluster": ["0", "1", "2"]})
|
||||
fig = px.density_heatmap(
|
||||
cluster_dff,
|
||||
x="X",
|
||||
y="Y",
|
||||
nbinsx=int(nbins),
|
||||
nbinsy=int(nbins),
|
||||
color_continuous_scale=color,
|
||||
facet_col=None if separated == "No" else "cluster",
|
||||
category_orders={"cluster": ["0", "1", "2"]},
|
||||
)
|
||||
fig.update_layout(template="plotly_white")
|
||||
return fig
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run_server(debug=True, port=8014)
|
Loading…
Reference in New Issue