import math from dash import Dash, dcc, html, Input, Output import plotly.express as px import plotly.graph_objects as go import numpy as np import pandas as pd import dash_bootstrap_components as dbc from sklearn.datasets import make_blobs # new: more than one plot in a callback # new: one plot as an input for another plot # new: plotly go object app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) df = pd.DataFrame( { "y": np.random.normal(loc=0, scale=10, size=1000), "x": np.random.normal(loc=10, scale=2, size=1000), } ) # define cluster colors # https://loading.io/color/feature/Spectral-10/ COLORS = { "0": "#9e0142", "1": "#d53e4f", "2": "#f46d43", "3": "#fdae61", "4": "#fee08b", "5": "#e6f598", "6": "#abdda4", "7": "#66c2a5", "8": "#3288bd", "9": "#5e4fa2", } X, y = make_blobs(n_samples=300, centers=3, n_features=2, random_state=0) cluster_df = pd.DataFrame(data=X, columns=["X", "Y"]) cluster_df["cluster"] = [str(i) for i in y] app.layout = html.Div( [ html.Div([html.H1("Dashboard 4")], className="header"), html.Div( [ dcc.Tabs( id="tabs", children=[ dcc.Tab( label="Tab One", id="tab_1_graphs", children=[ html.Div( [ dbc.Row( [ dbc.Col( [ dcc.Dropdown( options=[ "red", "green", "blue", ], value="red", id="color", multi=False, ) ], width=6, ), dbc.Col( [ dcc.Slider( min=math.floor( df["y"].min() ), max=math.ceil( df["y"].max() ), id="min_value", ) ], width=6, ), ] ), dbc.Row( [ dbc.Col( [dcc.Graph(id="graph_1")], width=6 ), dbc.Col( [dcc.Graph(id="graph_2")], width=6 ), ] ), dbc.Row( [ dbc.Col(width=6), dbc.Col( [dcc.Graph(id="graph_69")], width=6 ), ] ), ], className="tab_content", ), ], ), dcc.Tab( label="Tab Two", id="tab_2_graphs", children=[ html.Div( [ dbc.Row( [ dbc.Col( [ dcc.Slider( 1, 10, 1, value=3, id="slider_1", ) ] ), ] ), dbc.Row( [ dbc.Col( [dcc.Graph(id="graph_3")], width=8 ), dbc.Col( [dcc.Graph(id="graph_4")], width=4 ), ] ), ], className="tab_content", ) ], ), ], ) ], className="content", ), ] ) @app.callback(Output("graph_1", "figure"), Input("color", "value")) def update_graph_1(dropdown_value_color): fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color]) fig.update_layout(template="plotly_white") return fig @app.callback(Output("graph_2", "figure"), Input("min_value", "value")) def update_graph_2(min_value): if min_value: dff = df[df["y"] > min_value] else: dff = df fig = px.scatter(dff, x="x", y="y") fig.update_layout(template="plotly_white") return fig @app.callback(Output("graph_69", "figure"), Input("graph_2", "relayoutData")) def update_graph_2(selected_data): if selected_data is None or ( isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data ): dff = df else: dff = df[ (df["x"] >= selected_data.get("xaxis.range[0]")) & (df["x"] <= selected_data.get("xaxis.range[1]")) & (df["y"] >= selected_data.get("yaxis.range[0]")) & (df["y"] <= selected_data.get("yaxis.range[1]")) ] fig = px.scatter(dff, x="x", y="y") fig.update_layout(template="plotly_white") return fig @app.callback( Output("graph_3", "figure"), Output("graph_4", "figure"), Input("graph_3", "relayoutData"), Input("slider_1", "value"), ) def update_graph_3_and_4(selected_data, sliderValue): # forcing update of x, y and cluster_df with the proper am X, y = make_blobs( n_samples=100 * sliderValue, centers=sliderValue, n_features=2, random_state=0 ) cluster_df = pd.DataFrame(data=X, columns=["X", "Y"]) cluster_df["cluster"] = [str(i) for i in y] if selected_data is None or ( isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data ): cluster_dff = cluster_df else: cluster_dff = cluster_df[ (cluster_df["X"] >= selected_data.get("xaxis.range[0]")) & (cluster_df["X"] <= selected_data.get("xaxis.range[1]")) & (cluster_df["Y"] >= selected_data.get("yaxis.range[0]")) & (cluster_df["Y"] <= selected_data.get("yaxis.range[1]")) ] fig3 = px.scatter( cluster_dff, x="X", y="Y", color="cluster", color_discrete_map=COLORS, category_orders={"cluster": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]}, height=750, ) fig3.update_layout(template="plotly_white", coloraxis_showscale=False) fig3.update_traces(marker=dict(size=8)) group_counts = cluster_dff[["cluster", "X"]].groupby("cluster").count() fig4 = go.Figure( data=[ go.Bar( x=group_counts.index, y=group_counts["X"], marker_color=[COLORS.get(i) for i in group_counts.index], ) ] ) fig4.update_layout( height=750, template="plotly_white", title="Counts per cluster", xaxis_title="cluster", title_font_size=25, ) return fig3, fig4 if __name__ == "__main__": app.run_server(debug=True, port=8012)