import math from dash import Dash, dcc, html, Input, Output import plotly.express as px import plotly.graph_objects as go import numpy as np import pandas as pd import dash_bootstrap_components as dbc from sklearn.datasets import make_blobs # New: Density heatmap (2 columns) as third plot on tab 2 # with color and resolution options # New: Everything with inline style and bootstrap (no CSS) app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) # generate random normal distributed data for x and y # and store it in a Pandas DataFrame (for plot 1,2, and 5) np.random.seed(seed=8) df = pd.DataFrame({'y': np.random.normal(loc=0, scale=10, size=1000), 'x': np.random.normal(loc=10, scale=2, size=1000)}) # define cluster colors COLORS = {'0': "red", '1': "blue", '2': "grey"} # generic cluster data (for plot 3 and 4) X, y = make_blobs(n_samples=7500, centers=3, n_features=2, random_state=0, cluster_std=0.75) cluster_df = pd.DataFrame(data=X, columns=["X", "Y"]) cluster_df['cluster'] = [str(i) for i in y] app.layout = html.Div([html.Div([html.H1("Dashboard 6")], style={'margin': '10px 25px 25px 25px'}), html.Div([dcc.Tabs(id="tabs", children=[ dcc.Tab(label='Tab One', children=[html.Div([ dbc.Row([dbc.Col([dcc.Dropdown(options=['red', 'green', 'blue'], value='red', id='color', multi=False)], width=6), dbc.Col([dcc.Slider(min=math.floor(df['y'].min()), max=math.ceil(df['y'].max()), id="min_value")], width=6)]), dbc.Row([dbc.Col([dcc.Graph(id="graph_1")],width=6), dbc.Col([dcc.Graph(id="graph_2")],width=6)])], style={"margin": "100px 25px 25px 25px"}),]), dcc.Tab(label='Tab Two', id="tab_2_graphs", children=[html.Div([ dbc.Row([dbc.Col([dcc.Graph(id="graph_3")], width=8), dbc.Col([dcc.Graph(id="graph_4")], width=4)]), dbc.Row([dbc.Col(html.Div([dbc.Label("Number of bins:", html_for="graph_5_nbins"), dcc.Dropdown(options= [str(i) for i in range(5, 100, 5)], value='40', id='graph_5_nbins', multi=False)]),width={"size": 3},), dbc.Col(html.Div([dbc.Label("Color:", html_for="graph_5_color"), dcc.Dropdown(options=["Viridis", "Magma", "Hot", "GnBu", "Greys"], value='Viridis', id='graph_5_color', multi=False)]),width={"size": 3,"offset": 1},), dbc.Col(html.Div([dbc.Label("Separated for Cluster:", html_for="graph_5_separated"), dcc.RadioItems(options=["Yes","No"], value='No', id='graph_5_separated')]),width={"size": 3,"offset": 1},)]), dbc.Row([dbc.Col([dcc.Graph(id="graph_5")], width=12)])], style={"margin": "10px 25px 25px 25px"})]),])], style={"margin": "10px 25px 25px 25px"})]) def update_selected_data(selected_data): if selected_data is None or (isinstance(selected_data, dict) and 'xaxis.range[0]' not in selected_data): cluster_dff = cluster_df else: cluster_dff = cluster_df[ (cluster_df['X'] >= selected_data.get('xaxis.range[0]')) & (cluster_df['X'] <= selected_data.get('xaxis.range[1]')) & (cluster_df['Y'] >= selected_data.get('yaxis.range[0]')) & (cluster_df['Y'] <= selected_data.get('yaxis.range[1]'))] return cluster_dff @app.callback(Output("graph_1", "figure"), Input("color", "value")) def update_graph_1(dropdown_value_color): fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color]) fig.update_layout(template="plotly_white") return fig @app.callback(Output("graph_2", "figure"), Input("min_value", "value")) def update_graph_2(min_value): if min_value: dff = df[df['y'] > min_value] else: dff = df fig = px.scatter(dff, x='x', y='y') fig.update_layout(template="plotly_white") return fig @app.callback(Output("graph_3", "figure"), Output("graph_4", "figure"), Input("graph_3", "relayoutData")) def update_graph_3_and_4(selected_data): PLOT_HEIGHT = 400 cluster_dff = update_selected_data(selected_data=selected_data) fig3 = px.scatter(cluster_dff, x="X", y="Y", color="cluster", color_discrete_map=COLORS, category_orders={"cluster": ["0", "1", "2"]}) fig3.update_layout(height=PLOT_HEIGHT, template="plotly_white", coloraxis_showscale=False) fig3.update_traces(marker=dict(size=8)) group_counts = cluster_dff[['cluster', 'X']].groupby('cluster').count() fig4 = go.Figure(data=[go.Bar(x=group_counts.index, y=group_counts['X'], marker_color=[COLORS.get(i) for i in group_counts.index])]) fig4.update_layout(height=PLOT_HEIGHT, template="plotly_white", title="Counts per cluster", xaxis_title="cluster", title_font_size=25) return fig3, fig4 @app.callback(Output("graph_5", "figure"), Input("graph_5_nbins", "value"), Input("graph_5_color", "value"), Input("graph_5_separated", "value"), Input("graph_3", "relayoutData"),) def update_graph_5(nbins, color, separated, selected_data): cluster_dff = update_selected_data(selected_data=selected_data) fig = px.density_heatmap(cluster_dff, x="X", y="Y", nbinsx=int(nbins), nbinsy=int(nbins), color_continuous_scale=color, facet_col=None if separated == "No" else "cluster", category_orders={"cluster": ["0", "1", "2"]}) fig.update_layout(template="plotly_white") return fig if __name__ == '__main__': app.run_server(debug=True, port=8014)