import math from dash import Dash, dcc, html, Input, Output import plotly.express as px import plotly.graph_objects as go import numpy as np import pandas as pd import dash_bootstrap_components as dbc from sklearn.datasets import make_blobs # New: Density heatmap (2 columns) as third plot on tab 2 # with color and resolution options # New: Everything with inline style and bootstrap (no CSS) app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) # generate random normal distributed data for x and y # and store it in a Pandas DataFrame (for plot 1,2, and 5) np.random.seed(seed=8) df = pd.DataFrame( { "y": np.random.normal(loc=0, scale=10, size=1000), "x": np.random.normal(loc=10, scale=2, size=1000), } ) # define cluster colors COLORS = {"0": "red", "1": "blue", "2": "grey"} # generic cluster data (for plot 3 and 4) X, y = make_blobs( n_samples=7500, centers=3, n_features=2, random_state=0, cluster_std=0.75 ) cluster_df = pd.DataFrame(data=X, columns=["X", "Y"]) cluster_df["cluster"] = [str(i) for i in y] app.layout = html.Div( [ html.Div([html.H1("Dashboard 6")], style={"margin": "10px 25px 25px 25px"}), html.Div( [ dcc.Tabs( id="tabs", children=[ dcc.Tab( label="Tab One", children=[ html.Div( [ dbc.Row( [ dbc.Col( [ dcc.Dropdown( options=[ "red", "green", "blue", ], value="red", id="color", multi=False, ) ], width=6, ), dbc.Col( [ dcc.Slider( min=math.floor( df["y"].min() ), max=math.ceil( df["y"].max() ), id="min_value", ) ], width=6, ), ] ), dbc.Row( [ dbc.Col( [dcc.Graph(id="graph_1")], width=6 ), dbc.Col( [dcc.Graph(id="graph_2")], width=6 ), ] ), ], style={"margin": "100px 25px 25px 25px"}, ), ], ), dcc.Tab( label="Tab Two", id="tab_2_graphs", children=[ html.Div( [ dbc.Row( [ dbc.Col( [dcc.Graph(id="graph_3")], width=8 ), dbc.Col( [dcc.Graph(id="graph_4")], width=4 ), ] ), dbc.Row( [ dbc.Col( html.Div( [ dbc.Label( "Number of bins:", html_for="graph_5_nbins", ), dcc.Dropdown( options=[ str(i) for i in range( 5, 100, 5 ) ], value="40", id="graph_5_nbins", multi=False, ), ] ), width={"size": 3}, ), dbc.Col( html.Div( [ dbc.Label( "Color:", html_for="graph_5_color", ), dcc.Dropdown( options=[ "Viridis", "Magma", "Hot", "GnBu", "Greys", ], value="Viridis", id="graph_5_color", multi=False, ), ] ), width={"size": 3, "offset": 1}, ), dbc.Col( html.Div( [ dbc.Label( "Separated for Cluster:", html_for="graph_5_separated", ), dcc.RadioItems( options=["Yes", "No"], value="No", id="graph_5_separated", ), ] ), width={"size": 3, "offset": 1}, ), ] ), dbc.Row( [ dbc.Col( [dcc.Graph(id="graph_5")], width=12 ) ] ), ], style={"margin": "10px 25px 25px 25px"}, ) ], ), ], ) ], style={"margin": "10px 25px 25px 25px"}, ), ] ) def update_selected_data(selected_data): if selected_data is None or ( isinstance(selected_data, dict) and "xaxis.range[0]" not in selected_data ): cluster_dff = cluster_df else: cluster_dff = cluster_df[ (cluster_df["X"] >= selected_data.get("xaxis.range[0]")) & (cluster_df["X"] <= selected_data.get("xaxis.range[1]")) & (cluster_df["Y"] >= selected_data.get("yaxis.range[0]")) & (cluster_df["Y"] <= selected_data.get("yaxis.range[1]")) ] return cluster_dff @app.callback(Output("graph_1", "figure"), Input("color", "value")) def update_graph_1(dropdown_value_color): fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color]) fig.update_layout(template="plotly_white") return fig @app.callback(Output("graph_2", "figure"), Input("min_value", "value")) def update_graph_2(min_value): if min_value: dff = df[df["y"] > min_value] else: dff = df fig = px.scatter(dff, x="x", y="y") fig.update_layout(template="plotly_white") return fig # Hier passt nun graph_5 als input. @app.callback( Output("graph_3", "figure"), Output("graph_4", "figure"), Input("graph_5", "relayoutData"), ) def update_graph_3_and_4(selected_data): PLOT_HEIGHT = 400 cluster_dff = update_selected_data(selected_data=selected_data) fig3 = px.scatter( cluster_dff, x="X", y="Y", color="cluster", color_discrete_map=COLORS, category_orders={"cluster": ["0", "1", "2"]}, ) fig3.update_layout( height=PLOT_HEIGHT, template="plotly_white", coloraxis_showscale=False ) fig3.update_traces(marker=dict(size=8)) group_counts = cluster_dff[["cluster", "X"]].groupby("cluster").count() fig4 = go.Figure( data=[ go.Bar( x=group_counts.index, y=group_counts["X"], marker_color=[COLORS.get(i) for i in group_counts.index], ) ] ) fig4.update_layout( height=PLOT_HEIGHT, template="plotly_white", title="Counts per cluster", xaxis_title="cluster", title_font_size=25, ) return fig3, fig4 @app.callback( Output("graph_5", "figure"), Input("graph_5_nbins", "value"), Input("graph_5_color", "value"), Input("graph_5_separated", "value"), Input("graph_3", "relayoutData"), ) def update_graph_5(nbins, color, separated, selected_data): cluster_dff = update_selected_data(selected_data=selected_data) fig = px.density_heatmap( cluster_dff, x="X", y="Y", nbinsx=int(nbins), nbinsy=int(nbins), color_continuous_scale=color, facet_col=None if separated == "No" else "cluster", category_orders={"cluster": ["0", "1", "2"]}, ) fig.update_layout(template="plotly_white") return fig if __name__ == "__main__": app.run_server(debug=True, port=8014)