import math
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import numpy as np
import pandas as pd
import dash_bootstrap_components as dbc
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# generate random normal distributed data for x and y
# and store it in a pandas DataFrame
df = pd.DataFrame({'y': np.random.normal(loc=0, scale=10, size=1000),
'x': np.random.normal(loc=10, scale=2, size=1000)})
df_min = math.floor(df["y"].min())
df_max = math.ceil(df["y"].max())
app.layout = html.Div(
[
html.H1("Dashboard 2"),
dbc.Row(
[
dbc.Col(
[
dcc.Dropdown(
options=["red", "green", "blue"],
value="red",
id="color",
multi=False,
)
],
width=6,
),
dbc.Col(
[
dcc.RangeSlider(
min=df_min,
max=df_max,
value=[df_min, df_max],
id="range",
)
],
width=6,
),
]
),
dbc.Row(
[
dbc.Col([dcc.Graph(id="graph_1")], width=6),
dbc.Col([dcc.Graph(id="graph_2")], width=6),
]
),
],
className="m-4",
)
@app.callback(Output("graph_1", "figure"), Input("color", "value"))
def update_graph_1(dropdown_value_color):
fig = px.histogram(df, x="y", color_discrete_sequence=[dropdown_value_color])
fig.update_layout()
return fig
@app.callback(Output("graph_2", "figure"), Input("range", "value"))
def update_graph_2(range):
dff = df[(df['y'] > range[0]) & (df['y'] < range[1])]
fig = px.scatter(dff, x='x', y='y')
fig.update_layout()
return fig
if __name__ == '__main__':
app.run_server(debug=True, port=8000)