Compare commits

..

2 Commits

Author SHA1 Message Date
Marc Gauch 1871414592 A bit improved 2022-11-25 16:31:02 +01:00
Marc Gauch 3ae01d771f Frequency Line 2022-11-25 16:30:27 +01:00
2 changed files with 100 additions and 88 deletions

File diff suppressed because one or more lines are too long

View File

@ -34,26 +34,27 @@ if (!require(moments)) {
## Frequency Table ordered from wish.com ## Frequency Table ordered from wish.com
```{r} ```{r}
freq <- function(data) { freq <- function(data, rounded_digits = 2) {
# counts
total_count <- length(data)
na_count <- length(data[is.na(data)]) na_count <- length(data[is.na(data)])
valid_count <- length(data) - na_count valid_count <- total_count - na_count
frequency <- table(data) frequency <- table(data)
p <- prop.table(frequency) p <- prop.table(frequency)
percent <- round(p * 100, digits = 2) valid_percent <- round(p * 100, digits = rounded_digits)
frequency_sum <- cumsum(frequency) na_percent <- round(na_count / length(data) * 100, digits = rounded_digits)
hkum <- cumsum(p)
percent_sum <- round(hkum * 100, digits = 2) percent <- round(frequency/total_count*100, digits = rounded_digits)
freq_table <- cbind(frequency, percent, frequency_sum, percent_sum) cumulative_percent <- round(cumsum(p) * 100, digits = rounded_digits)
valid_percent <- round(valid_count / length(data) * 100, digits = 2) freq_table <- cbind(frequency, percent, valid_percent, cumulative_percent)
na_percent <- round(na_count / length(data) * 100, digits = 2)
valid_percent_sum <- sum(as.data.frame(freq_table)$percent)
Valid_Total <- c(valid_count, valid_percent_sum, 100, NaN)
print(freq_table) NAs <- c(na_count, na_percent, NaN, NaN)
Total <- c(total_count, 100, NaN, NaN)
count <- c(valid_count, na_count, valid_count + na_count) print(rbind(freq_table, Valid_Total, NAs, Total))
percent <- c(valid_percent, na_percent, valid_percent + na_percent)
df <- data.frame(count, percent, row.names = c("valid", "NA", "Total"))
print(df)
} }
``` ```
*Source: https://tellmi.psy.lmu.de/tutorials/deskriptive-statistiken-und-grafiken.html#haeufigkeiten-diskret and adapted* *Source: https://tellmi.psy.lmu.de/tutorials/deskriptive-statistiken-und-grafiken.html#haeufigkeiten-diskret and adapted*
@ -433,6 +434,12 @@ qqline(age)
### Historam for age {.tabset} ### Historam for age {.tabset}
#### Frequency {-}
```{r}
hist(age, freq = F)
lines(density(age), lwd = 2, col = "black")
```
#### Auto Breaks {-} #### Auto Breaks {-}
```{r} ```{r}
hist(age) hist(age)