diff --git a/Heatmaps.R b/Heatmaps.R new file mode 100644 index 0000000..dfb9fff --- /dev/null +++ b/Heatmaps.R @@ -0,0 +1,93 @@ +rm(list=ls()) +#######get required libraries####### +library(ggplot2) +library(dplyr) +library(tidyverse) +library(RSwissMaps) +library(viridis) + +#######set working direction and get the data +setwd("~/BAK_Projekt") + +#base +mapCH <- mapCH2016 %>% dplyr::rename("bfs_nr"="can") + +#create dataset on canton level +df_bak <- read.csv("~/BAK_Projekt/Liste_BAK2.csv", sep = ";") + +df_bak_red <- df_bak %>% + dplyr::group_by(Kanton) %>% + dplyr::summarise(count=n()) +df_bak_red <- df_bak_red[!(df_bak_red$Kanton ==""),] +df_bak_red$Kt <- c("AG", "AI", "AR", "BL", "BS", "BE", "FR", "GE", "GL", "GR", "JU", "LU", "NE", + "NW", "OW", "SH", "SZ", "SO", "SG", "TI", "TG", "UR", "VD", "VS", "ZG", "ZH") +df_bak_red$bfs_nr <- as.integer(c("19", "16", "15", "13", "12", "2", "10", "25", "8", "18", "26", "3", "24", + "7", "6", "14", "5", "11", "17", "21", "20", "4", "22", "23", "9", "1")) + +#get coordinates (required reference system CH1903/LV03) +mapCH.short <- mapCH[!duplicated(mapCH$bfs_nr),] +df.map <- full_join(df_bak_red, mapCH.short, by="bfs_nr") %>% + select("bfs_nr", "Kt", "name", "count", "bfs_nr", "long", "lat") + + + +# Plotting sample data +can.plot(df.map$bfs_nr, df.map$count, 2016, + boundaries = "c", boundaries_size = 0.2, boundaries_color = "white", + title = "Verteilung der Institutionen auf Kantonsebene") + #geom_text(aes(x=df.map$long, y=df.map$lat ,label = df.map$Kt)) + + + + + + + +####Example for district map -> can be deleted +# Generating sample data: +dt.dis <- dis.template(2016) +for(i in 1:nrow(dt.dis)){dt.dis$values[i] <- sample(c(300:700), 1)/1000} +# Plotting sample data: +dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016, + boundaries = "c", + title = "Beispiel auf Bezirksebene (random data)") +# Plotting sample data for the canton of Aargau: +dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016, cantons = c("GR"), + lakes = c("none"), + title = "Beispiel Kanton Graubünden (Bezirksebene)") + + + + + +#Example Dataset +library(scatterpie) +table7 <- table7 %>% dplyr::rename("name"="Kanton") +table7 <- table7[!(table7$name ==""),] +test <- full_join(df.map, table7, by="name") +test$radius <- 6*abs(rnorm(nrow(test))) + +p <- can.plot(df.map$bfs_nr, df.map$count, 2016, + boundaries = "c", boundaries_size = 0.2, boundaries_color = "white", + title = "Verteilung der Institutionen auf Kantonsebene") + + coord_quickmap() + +p + geom_scatterpie(aes(x=long, y=lat, group=bfs_nr, r=radius), + data=test, cols=c(11:13), color=NA, alpha=.8) + + geom_scatterpie_legend(test$radius, x=-160, y=-55) + + + + + + + + test %>% + select(c(11:13)) %>% + pivot_longer(cols = names(.)) %>% + ggplot(aes(x = value, y = 1, fill = name)) + + geom_col(position = "stack") + + coord_polar() + + theme_void() + \ No newline at end of file