rm(list=ls()) #######get required libraries####### library(ggplot2) library(dplyr) library(tidyverse) library(RSwissMaps) library(viridis) #######set working direction and get the data setwd("~/BAK_Projekt") #base mapCH <- mapCH2016 %>% dplyr::rename("bfs_nr"="can") #create dataset on canton level df_bak <- read.csv("~/BAK_Projekt/Liste_BAK2.csv", sep = ";") df_bak_red <- df_bak %>% dplyr::group_by(Kanton) %>% dplyr::summarise(count=n()) df_bak_red <- df_bak_red[!(df_bak_red$Kanton ==""),] df_bak_red$Kt <- c("AG", "AI", "AR", "BL", "BS", "BE", "FR", "GE", "GL", "GR", "JU", "LU", "NE", "NW", "OW", "SH", "SZ", "SO", "SG", "TI", "TG", "UR", "VD", "VS", "ZG", "ZH") df_bak_red$bfs_nr <- as.integer(c("19", "16", "15", "13", "12", "2", "10", "25", "8", "18", "26", "3", "24", "7", "6", "14", "5", "11", "17", "21", "20", "4", "22", "23", "9", "1")) #get coordinates (required reference system CH1903/LV03) mapCH.short <- mapCH[!duplicated(mapCH$bfs_nr),] df.map <- full_join(df_bak_red, mapCH.short, by="bfs_nr") %>% select("bfs_nr", "Kt", "name", "count", "bfs_nr", "long", "lat") # Plotting sample data can.plot(df.map$bfs_nr, df.map$count, 2016, boundaries = "c", boundaries_size = 0.2, boundaries_color = "white", title = "Verteilung der Institutionen auf Kantonsebene") #geom_text(aes(x=df.map$long, y=df.map$lat ,label = df.map$Kt)) ####Example for district map -> can be deleted # Generating sample data: dt.dis <- dis.template(2016) for(i in 1:nrow(dt.dis)){dt.dis$values[i] <- sample(c(300:700), 1)/1000} # Plotting sample data: dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016, boundaries = "c", title = "Beispiel auf Bezirksebene (random data)") # Plotting sample data for the canton of Aargau: dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016, cantons = c("GR"), lakes = c("none"), title = "Beispiel Kanton Graubünden (Bezirksebene)") #Example Dataset library(scatterpie) table7 <- table7 %>% dplyr::rename("name"="Kanton") table7 <- table7[!(table7$name ==""),] test <- full_join(df.map, table7, by="name") test$radius <- 6*abs(rnorm(nrow(test))) p <- can.plot(df.map$bfs_nr, df.map$count, 2016, boundaries = "c", boundaries_size = 0.2, boundaries_color = "white", title = "Verteilung der Institutionen auf Kantonsebene") + coord_quickmap() p + geom_scatterpie(aes(x=long, y=lat, group=bfs_nr, r=radius), data=test, cols=c(11:13), color=NA, alpha=.8) geom_scatterpie_legend(test$radius, x=-160, y=-55) test %>% select(c(11:13)) %>% pivot_longer(cols = names(.)) %>% ggplot(aes(x = value, y = 1, fill = name)) + geom_col(position = "stack") + coord_polar() + theme_void()