BAK-Kulturgueter/Heatmaps.R

168 lines
9.2 KiB
R

#rm(list=ls())
#######get required libraries#######
library(ggplot2)
library(dplyr)
library(tidyverse)
library(RSwissMaps)
library(viridis)
#######set working direction and get the data
setwd("~/BAK_Projekt")
#get datasets
df_bak <- read.csv("~/BAK_Projekt/Liste_BAK4.csv", sep = ";")
df_bin <- read.csv("~/BAK_Projekt/df_Akteure_binwide.csv", sep = ";")
#base map
mapCH <- RSwissMaps::mapCH2016 %>% dplyr::rename("bfs_nr"="can")
#create dataset on canton level
df_bak_red <- df_bak %>%
dplyr::group_by(Kanton) %>%
dplyr::summarise(count=n())
df_bak_red <- df_bak_red[!(df_bak_red$Kanton ==""),]
df_bak_red$Kt <- c("AG", "AI", "AR", "BL", "BS", "BE", "FR", "GE", "GL", "GR", "JU", "LU", "NE",
"NW", "OW", "SH", "SZ", "SO", "SG", "TI", "TG", "UR", "VD", "VS", "ZG", "ZH")
df_bak_red$bfs_nr <- as.integer(c("19", "16", "15", "13", "12", "2", "10", "25", "8", "18", "26", "3", "24",
"7", "6", "14", "5", "11", "17", "21", "20", "4", "22", "23", "9", "1"))
df_binKanton <- full_join(df_bak_red, df_bin, by="Kanton")
#get coordinates (required reference system CH1903/LV03)
mapCH.short <- mapCH[!duplicated(mapCH$bfs_nr),]
df.map <- full_join(df_bak_red, mapCH.short, by="bfs_nr") %>%
select("bfs_nr", "Kt", "name", "count", "bfs_nr", "long", "lat")
# Plotting sample data
RSwissMaps::can.plot(df.map$bfs_nr, df.map$count, 2016,
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
title = "Verteilung der Institutionen auf Kantonsebene")
#geom_text(aes(x=df.map$long, y=df.map$lat ,label = df.map$Kt))
##Figure 1
df_mm1 <- dplyr::filter(df_binKanton, !(materielles...mobiles.Kulturerbe %in% "")) %>%
group_by(Handlungsfelder, rechtliche.Institutionalisierung.des.Auftrags, bfs_nr, Kanton) %>% dplyr::summarise(materielles_mobiles_Kulturerbe=n()) %>%
filter(Handlungsfelder == "Zugänglichmachen") %>% group_by(bfs_nr) %>% mutate(percent = prop.table(materielles_mobiles_Kulturerbe)) %>%
filter(rechtliche.Institutionalisierung.des.Auftrags != "mit eigenem (privatem) Auftrag")
f1_mm <- RSwissMaps::can.plot(df_mm1$bfs_nr, df_mm1$percent, 2016,
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
title = "Anzahl Akteure (nach Institutionalisierung Auftrag) im Handlungsfeld \n'Zugänglichmachen' bezüglich materiellem und mobilen Kulturerbe")
df_mi1 <- dplyr::filter(df_binKanton, !(materielles...immobiles.Kulturerbe %in% "")) %>%
group_by(Handlungsfelder, rechtliche.Institutionalisierung.des.Auftrags, bfs_nr, Kanton) %>% dplyr::summarise(materielles_immobiles_Kulturerbe=n()) %>%
filter(Handlungsfelder == "Zugänglichmachen") %>% group_by(bfs_nr) %>% mutate(percent = prop.table(materielles_immobiles_Kulturerbe)) %>%
filter(rechtliche.Institutionalisierung.des.Auftrags != "mit eigenem (privatem) Auftrag")
f1_mi <- RSwissMaps::can.plot(df_mi1$bfs_nr, df_mi1$percent, 2016,
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
title = "Anzahl Akteure (nach Institutionalisierung Auftrag) im Handlungsfeld \n'Zugänglichmachen' bezüglich materiellem und immobilen Kulturerbe")
df_i1 <- dplyr::filter(df_binKanton, !(immaterielles.Kulturerbe %in% "")) %>%
group_by(Handlungsfelder, rechtliche.Institutionalisierung.des.Auftrags, bfs_nr, Kanton) %>% dplyr::summarise(immaterielles.Kulturerbe=n()) %>%
filter(Handlungsfelder == "Zugänglichmachen") %>% group_by(bfs_nr) %>% mutate(percent = prop.table(immaterielles.Kulturerbe)) %>%
filter(rechtliche.Institutionalisierung.des.Auftrags != "mit eigenem (privatem) Auftrag")
f1_i <- RSwissMaps::can.plot(df_i1$bfs_nr, df_i1$percent, 2016,
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
title = "Anzahl Akteure (nach Institutionalisierung Auftrag) im Handlungsfeld \n'Zugänglichmachen' bezüglich immateriellem Kulturerbe")
ggsave(plot=f1_mm, filename = "Figure1_mm.jpg", device="jpg", width = 15, height = 10,
path = "~/BAK_Projekt/Figures")
ggsave(plot=f1_mi, filename = "Figure1_im.jpg", device="jpg", width = 15, height = 10,
path = "~/BAK_Projekt/Figures")
ggsave(plot=f1_i, filename = "Figure1_i.jpg", device="jpg", width = 15, height = 10,
path = "~/BAK_Projekt/Figures")
##FIGURE 2
##Materielles mobiles Kulturerbe
df_mm2 <- dplyr::filter(df_binKanton, !(materielles...mobiles.Kulturerbe %in% "")) %>%
group_by(Handlungsfelder, Hauptfinanzierungsträger, bfs_nr, Kanton) %>% dplyr::summarise(materielles_mobiles_Kulturerbe=n()) %>%
filter(Handlungsfelder == "Reaktualisieren") %>% group_by(bfs_nr) %>% mutate(percent = prop.table(materielles_mobiles_Kulturerbe)) %>%
filter(Hauptfinanzierungsträger != "privat")
#add additional row as Uri appears to have no data instead of 0 percentage
new.r_mm <- data.frame("Reaktualisieren", "staatlich/öffentlich", 4, "Uri", 0, 0)
names(new.r_mm)<- colnames(df_mm2)
df_mm2.1 <- rbind(df_mm2, new.r_mm)
f2_mm <- RSwissMaps::can.plot(df_mm2.1$bfs_nr, df_mm2.1$percent, 2016,
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
title = "Anzahl Akteure (nach Hauptfinanzierungsträger) im Handlungsfeld\n'Reaktualisieren/Valorisieren' bezüglich materiellem und mobilem Kulturerbe",
legend_title = "Je dunkler die Färbung, desto höher ist der\nprozentuale Anteil an staatliche/öffentliche Hauptfinanzierungsträgern")
##Materielles immobiles Kutlurerbe
df_mi2 <- dplyr::filter(df_binKanton, !(materielles...immobiles.Kulturerbe %in% "")) %>%
group_by(Handlungsfelder, Hauptfinanzierungsträger, bfs_nr, Kanton) %>% dplyr::summarise(materielles_immobiles_Kulturerbe=n()) %>%
filter(Handlungsfelder == "Reaktualisieren") %>% group_by(bfs_nr) %>% mutate(percent = prop.table(materielles_immobiles_Kulturerbe)) %>%
filter(Hauptfinanzierungsträger != "privat")
#add additional row as AG, GL, GR and ZH appears to have no data instead of 0 percentage
new.r_mi <- data.frame(Handlungsfelder = c("Reaktualisieren"),
Hauptfinanzierungsträger = "staatlich/öffentlich",
bfs_nr = c(19, 8, 18, 1),
Kanton = c("Aargau", "Glarus", "Graubünden", "Zürich"),
materielles_immobiles_Kulturerbe = 0,
percent = 0)
df_mi2.1 <- rbind(df_mi2, new.r_mi)
f2_mi <- RSwissMaps::can.plot(df_mi2.1$bfs_nr, df_mi2.1$percent, 2016,
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
title = "Anzahl Akteure (nach Hauptfinanzierungsträger) im Handlungsfeld\n'Reaktualisieren/Valorisieren' bezüglich materiellem und immobilem Kulturerbe",
legend_title = "Je dunkler die Färbung, desto höher ist der\nprozentuale Anteil an staatliche/öffentliche Hauptfinanzierungsträgern")
##Immaterielles Kulturerbe
df_i2 <- dplyr::filter(df_binKanton, !(immaterielles.Kulturerbe %in% "")) %>%
group_by(Handlungsfelder, Hauptfinanzierungsträger, bfs_nr, Kanton) %>% dplyr::summarise(immaterielles.Kulturerbe=n()) %>%
filter(Handlungsfelder == "Reaktualisieren") %>% group_by(bfs_nr) %>% mutate(percent = prop.table(immaterielles.Kulturerbe)) %>%
filter(Hauptfinanzierungsträger != "privat")
#add additional row as AI, BE, SG and VS appears to have no data instead of 0 percentage
new.r_i <- data.frame(Handlungsfelder = c("Reaktualisieren"),
Hauptfinanzierungsträger = "staatlich/öffentlich",
bfs_nr = c(16, 2, 17, 23),
Kanton = c("Appenzell Ausserrhoden", "Bern", "St. Gallen", "Wallis"),
materielles_immobiles_Kulturerbe = 0,
percent = 0)
df_i2.1 <- rbind(df_i2, new.r_i)
f2_i <- RSwissMaps::can.plot(df_i2.1$bfs_nr, df_i2.1$percent, 2016,
boundaries = "c", boundaries_size = 0.2, boundaries_color = "white",
title = "Anzahl Akteure (nach Hauptfinanzierungsträger) im Handlungsfeld\n'Reaktualisieren/Valorisieren' bezüglich immateriellem Kulturerbe",
legend_title = "Je dunkler die Färbung, desto höher ist der\nprozentuale Anteil an staatliche/öffentliche Hauptfinanzierungsträgern")
ggsave(plot=f2_mm, filename = "Figure2_mm.jpg", device="jpg", width = 15, height = 10,
path = "~/BAK_Projekt/Figures")
ggsave(plot=f2_mi, filename = "Figure2_mi.jpg", device="jpg", width = 15, height = 10,
path = "~/BAK_Projekt/Figures")
ggsave(plot=f2_i, filename = "Figure2_i.jpg", device="jpg", width = 15, height = 10,
path = "~/BAK_Projekt/Figures")
####Example for district map####
# Generating sample data:
#dt.dis <- dis.template(2016)
#for(i in 1:nrow(dt.dis)){dt.dis$values[i] <- sample(c(300:700), 1)/1000}
## Plotting sample data:
#dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016,
# boundaries = "c",
# title = "Beispiel auf Bezirksebene (random data)")
# Plotting sample data for the canton of Aargau:
#dis.plot(dt.dis$bfs_nr, dt.dis$values, 2016, cantons = c("GR"),
# lakes = c("none"),
# title = "Beispiel Kanton Graubünden (Bezirksebene)")