final branch commit

master
TheOriginalGraLargeShrimpakaReaper 2024-10-18 15:35:22 +02:00
parent ea8280ba0e
commit 1507a506ba
2 changed files with 2 additions and 4 deletions

View File

@ -116,7 +116,7 @@ print(f"Die Korrelation zwischen der durchschnittlichen Herzfrequenz und der Sch
# plt.savefig(graphic_corr_path)
# plt.show()
# Schritt 5: Visualisiere den Zusammenhang zwischen Herzfrequenz und Schlafdauer (invertierte y-Achse)
# Schritt 5: Visualisiere den Zusammenhang zwischen Schlafdauer und Herzfrequenz
plt.figure(figsize=(10, 6))
plt.scatter(combined_data['Durchschnittliche Dauer'], combined_data['avg_hr'], color='blue', label='Datenpunkte')
plt.title('Zusammenhang zwischen Schlafdauer und Herzfrequenz (Durchschnitt)')
@ -124,16 +124,14 @@ plt.xlabel('Schlafdauer (Stunden)')
plt.ylabel('Durchschnittliche Herzfrequenz (bpm)')
plt.grid(True)
# Berechne und zeichne die Trendlinie (umgekehrt)
# Berechne und zeichne die Trendlinie
m, b = np.polyfit(combined_data['Durchschnittliche Dauer'], combined_data['avg_hr'], 1)
plt.plot(combined_data['Durchschnittliche Dauer'], m * combined_data['Durchschnittliche Dauer'] + b, color='red', label=f'Trendlinie (Kor = {correlation:.2f})')
plt.gca().invert_yaxis() # Y-Achse invertieren, da die Herzfrequenz auf der Y-Achse ist
plt.legend()
plt.savefig(graphic_corr_path)
plt.show()
# Schritt 6: Erstelle eine Grafik pro Kalenderwoche (HR und Schlafdaten)
fig, ax1 = plt.subplots(figsize=(30, 8)) # Breitere Darstellung

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

After

Width:  |  Height:  |  Size: 40 KiB