{ "cells": [ { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2024-10-19T14:37:53.875020Z", "start_time": "2024-10-19T14:37:53.872643Z" } }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Daten\n", "Wir haben 2 Datensätze:\n", "Einen für die Herzfrequenz pro Tag und einen für den Schlaf.\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2024-10-19T14:37:53.901186Z", "start_time": "2024-10-19T14:37:53.889152Z" } }, "outputs": [], "source": [ "# Loading data\n", "hr_df = pd.read_csv(r'..\\..\\data\\Oliver\\raw\\raw_hr_hr.csv')\n", "\n", "sleep_df = pd.read_csv(r'..\\..\\data\\Oliver\\raw\\sleep.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Cleaning\n", "\n", "### Herzfrequenz\n", "\n", "### Schlaf\n", "\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2024-10-19T14:37:54.038370Z", "start_time": "2024-10-19T14:37:54.020132Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", " | sleep_date | \n", "total_sleep_h | \n", "avg_sleep_hr | \n", "next_day | \n", "
---|---|---|---|---|
0 | \n", "2024-08-12 | \n", "6.40 | \n", "67 | \n", "2024-08-13 | \n", "
1 | \n", "2024-08-13 | \n", "8.17 | \n", "69 | \n", "2024-08-14 | \n", "
2 | \n", "2024-08-14 | \n", "8.58 | \n", "62 | \n", "2024-08-15 | \n", "
3 | \n", "2024-08-15 | \n", "7.53 | \n", "60 | \n", "2024-08-16 | \n", "
4 | \n", "2024-08-16 | \n", "8.60 | \n", "57 | \n", "2024-08-17 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
56 | \n", "2024-10-14 | \n", "8.65 | \n", "65 | \n", "2024-10-15 | \n", "
57 | \n", "2024-10-15 | \n", "8.37 | \n", "60 | \n", "2024-10-16 | \n", "
58 | \n", "2024-10-16 | \n", "7.73 | \n", "61 | \n", "2024-10-17 | \n", "
59 | \n", "2024-10-17 | \n", "8.05 | \n", "62 | \n", "2024-10-18 | \n", "
60 | \n", "2024-10-18 | \n", "9.93 | \n", "63 | \n", "2024-10-19 | \n", "
61 rows × 4 columns
\n", "