handson-ml/15_autoencoders.ipynb

1757 lines
57 KiB
Plaintext
Raw Normal View History

2016-10-06 14:08:46 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"**Chapter 15 Autoencoders**"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
2017-08-19 17:01:55 +02:00
"_This notebook contains all the sample code and solutions to the exercises in chapter 15._"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"# To support both python 2 and python 3\n",
"from __future__ import division, print_function, unicode_literals\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import os\n",
2016-10-08 00:19:23 +02:00
"import sys\n",
2016-10-06 14:08:46 +02:00
"\n",
"# to make this notebook's output stable across runs\n",
"def reset_graph(seed=42):\n",
" tf.reset_default_graph()\n",
" tf.set_random_seed(seed)\n",
" np.random.seed(seed)\n",
2016-10-06 14:08:46 +02:00
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"autoencoders\"\n",
"\n",
"def save_fig(fig_id, tight_layout=True):\n",
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format='png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"A couple utility functions to plot grayscale 28x28 image:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"def plot_image(image, shape=[28, 28]):\n",
" plt.imshow(image.reshape(shape), cmap=\"Greys\", interpolation=\"nearest\")\n",
" plt.axis(\"off\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"def plot_multiple_images(images, n_rows, n_cols, pad=2):\n",
" images = images - images.min() # make the minimum == 0, so the padding looks white\n",
" w,h = images.shape[1:]\n",
" image = np.zeros(((w+pad)*n_rows+pad, (h+pad)*n_cols+pad))\n",
" for y in range(n_rows):\n",
" for x in range(n_cols):\n",
" image[(y*(h+pad)+pad):(y*(h+pad)+pad+h),(x*(w+pad)+pad):(x*(w+pad)+pad+w)] = images[y*n_cols+x]\n",
" plt.imshow(image, cmap=\"Greys\", interpolation=\"nearest\")\n",
" plt.axis(\"off\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"# PCA with a linear Autoencoder"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Build 3D dataset:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"import numpy.random as rnd\n",
"\n",
2016-10-06 14:08:46 +02:00
"rnd.seed(4)\n",
"m = 200\n",
2016-10-06 14:08:46 +02:00
"w1, w2 = 0.1, 0.3\n",
"noise = 0.1\n",
"\n",
"angles = rnd.rand(m) * 3 * np.pi / 2 - 0.5\n",
"data = np.empty((m, 3))\n",
"data[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * rnd.randn(m) / 2\n",
"data[:, 1] = np.sin(angles) * 0.7 + noise * rnd.randn(m) / 2\n",
"data[:, 2] = data[:, 0] * w1 + data[:, 1] * w2 + noise * rnd.randn(m)"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Normalize the data:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(data[:100])\n",
"X_test = scaler.transform(data[100:])"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Now let's build the Autoencoder..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: instead of using the `fully_connected()` function from the `tensorflow.contrib.layers` module (as in the book), we now use the `dense()` function from the `tf.layers` module, which did not exist when this chapter was written. This is preferable because anything in contrib may change or be deleted without notice, while `tf.layers` is part of the official API. As you will see, the code is mostly the same.\n",
"\n",
"The main differences relevant to this chapter are:\n",
"* the `scope` parameter was renamed to `name`, and the `_fn` suffix was removed in all the parameters that had it (for example the `activation_fn` parameter was renamed to `activation`).\n",
"* the `weights` parameter was renamed to `kernel` and the weights variable is now named `\"kernel\"` rather than `\"weights\"`,\n",
"* the bias variable is now named `\"bias\"` rather than `\"biases\"`,\n",
"* the default activation is `None` instead of `tf.nn.relu`"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"import tensorflow as tf\n",
"\n",
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"n_inputs = 3\n",
"n_hidden = 2 # codings\n",
"n_outputs = n_inputs\n",
"\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"hidden = tf.layers.dense(X, n_hidden)\n",
"outputs = tf.layers.dense(hidden, n_outputs)\n",
2016-10-06 14:08:46 +02:00
"\n",
"reconstruction_loss = tf.reduce_mean(tf.square(outputs - X))\n",
2016-10-06 14:08:46 +02:00
"\n",
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
"training_op = optimizer.minimize(reconstruction_loss)\n",
2016-10-06 14:08:46 +02:00
"\n",
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_iterations = 1000\n",
2016-10-06 14:08:46 +02:00
"codings = hidden\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for iteration in range(n_iterations):\n",
" training_op.run(feed_dict={X: X_train})\n",
" codings_val = codings.eval(feed_dict={X: X_test})"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"fig = plt.figure(figsize=(4,3))\n",
"plt.plot(codings_val[:,0], codings_val[:, 1], \"b.\")\n",
"plt.xlabel(\"$z_1$\", fontsize=18)\n",
"plt.ylabel(\"$z_2$\", fontsize=18, rotation=0)\n",
"save_fig(\"linear_autoencoder_pca_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"# Stacked Autoencoders"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Let's use MNIST:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"from tensorflow.examples.tutorials.mnist import input_data\n",
"mnist = input_data.read_data_sets(\"/tmp/data/\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Train all layers at once"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Let's build a stacked Autoencoder with 3 hidden layers and 1 output layer (ie. 2 stacked Autoencoders). We will use ELU activation, He initialization and L2 regularization."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: since the `tf.layers.dense()` function is incompatible with `tf.contrib.layers.arg_scope()` (which is used in the book), we now use python's `functools.partial()` function instead. It makes it easy to create a `my_dense_layer()` function that just calls `tf.layers.dense()` with the desired parameters automatically set (unless they are overridden when calling `my_dense_layer()`)."
]
},
2016-10-06 14:08:46 +02:00
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"from functools import partial\n",
2016-10-06 14:08:46 +02:00
"\n",
"n_inputs = 28 * 28\n",
2016-10-06 14:08:46 +02:00
"n_hidden1 = 300\n",
"n_hidden2 = 150 # codings\n",
"n_hidden3 = n_hidden1\n",
"n_outputs = n_inputs\n",
"\n",
"learning_rate = 0.01\n",
"l2_reg = 0.0001\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"\n",
"he_init = tf.contrib.layers.variance_scaling_initializer() # He initialization\n",
"#Equivalent to:\n",
"#he_init = lambda shape, dtype=tf.float32: tf.truncated_normal(shape, 0., stddev=np.sqrt(2/shape[0]))\n",
"l2_regularizer = tf.contrib.layers.l2_regularizer(l2_reg)\n",
"my_dense_layer = partial(tf.layers.dense,\n",
" activation=tf.nn.elu,\n",
" kernel_initializer=he_init,\n",
" kernel_regularizer=l2_regularizer)\n",
"\n",
"hidden1 = my_dense_layer(X, n_hidden1)\n",
"hidden2 = my_dense_layer(hidden1, n_hidden2)\n",
"hidden3 = my_dense_layer(hidden2, n_hidden3)\n",
"outputs = my_dense_layer(hidden3, n_outputs, activation=None)\n",
2016-10-06 14:08:46 +02:00
"\n",
"reconstruction_loss = tf.reduce_mean(tf.square(outputs - X))\n",
2016-10-06 14:08:46 +02:00
"\n",
"reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
"loss = tf.add_n([reconstruction_loss] + reg_losses)\n",
2016-10-06 14:08:46 +02:00
"\n",
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"\n",
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()\n",
"saver = tf.train.Saver() # not shown in the book"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Now let's train it! Note that we don't feed target values (`y_batch` is not used). This is unsupervised training."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_epochs = 5\n",
2016-10-06 14:08:46 +02:00
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = mnist.train.num_examples // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\") # not shown in the book\n",
" sys.stdout.flush() # not shown\n",
2016-10-06 14:08:46 +02:00
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch})\n",
" loss_train = reconstruction_loss.eval(feed_dict={X: X_batch}) # not shown\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", loss_train) # not shown\n",
" saver.save(sess, \"./my_model_all_layers.ckpt\") # not shown"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"This function loads the model, evaluates it on the test set (it measures the reconstruction error), then it displays the original image and its reconstruction:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"def show_reconstructed_digits(X, outputs, model_path = None, n_test_digits = 2):\n",
" with tf.Session() as sess:\n",
" if model_path:\n",
" saver.restore(sess, model_path)\n",
" X_test = mnist.test.images[:n_test_digits]\n",
" outputs_val = outputs.eval(feed_dict={X: X_test})\n",
"\n",
" fig = plt.figure(figsize=(8, 3 * n_test_digits))\n",
" for digit_index in range(n_test_digits):\n",
" plt.subplot(n_test_digits, 2, digit_index * 2 + 1)\n",
" plot_image(X_test[digit_index])\n",
" plt.subplot(n_test_digits, 2, digit_index * 2 + 2)\n",
" plot_image(outputs_val[digit_index])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
2017-02-17 11:51:26 +01:00
"show_reconstructed_digits(X, outputs, \"./my_model_all_layers.ckpt\")\n",
2016-10-06 14:08:46 +02:00
"save_fig(\"reconstruction_plot\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tying weights"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is common to tie the weights of the encoder and the decoder (`weights_decoder = tf.transpose(weights_encoder)`). Unfortunately this makes it impossible (or very tricky) to use the `tf.layers.dense()` function, so we need to build the Autoencoder manually:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"reset_graph()\n",
"\n",
"n_inputs = 28 * 28\n",
"n_hidden1 = 300\n",
"n_hidden2 = 150 # codings\n",
"n_hidden3 = n_hidden1\n",
"n_outputs = n_inputs\n",
"\n",
"learning_rate = 0.01\n",
"l2_reg = 0.0005"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"activation = tf.nn.elu\n",
"regularizer = tf.contrib.layers.l2_regularizer(l2_reg)\n",
"initializer = tf.contrib.layers.variance_scaling_initializer()\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"\n",
"weights1_init = initializer([n_inputs, n_hidden1])\n",
"weights2_init = initializer([n_hidden1, n_hidden2])\n",
"\n",
"weights1 = tf.Variable(weights1_init, dtype=tf.float32, name=\"weights1\")\n",
"weights2 = tf.Variable(weights2_init, dtype=tf.float32, name=\"weights2\")\n",
"weights3 = tf.transpose(weights2, name=\"weights3\") # tied weights\n",
"weights4 = tf.transpose(weights1, name=\"weights4\") # tied weights\n",
"\n",
"biases1 = tf.Variable(tf.zeros(n_hidden1), name=\"biases1\")\n",
"biases2 = tf.Variable(tf.zeros(n_hidden2), name=\"biases2\")\n",
"biases3 = tf.Variable(tf.zeros(n_hidden3), name=\"biases3\")\n",
"biases4 = tf.Variable(tf.zeros(n_outputs), name=\"biases4\")\n",
"\n",
"hidden1 = activation(tf.matmul(X, weights1) + biases1)\n",
"hidden2 = activation(tf.matmul(hidden1, weights2) + biases2)\n",
"hidden3 = activation(tf.matmul(hidden2, weights3) + biases3)\n",
"outputs = tf.matmul(hidden3, weights4) + biases4\n",
"\n",
"reconstruction_loss = tf.reduce_mean(tf.square(outputs - X))\n",
"reg_loss = regularizer(weights1) + regularizer(weights2)\n",
"loss = reconstruction_loss + reg_loss\n",
"\n",
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"\n",
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"n_epochs = 5\n",
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = mnist.train.num_examples // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch})\n",
" loss_train = reconstruction_loss.eval(feed_dict={X: X_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", loss_train)\n",
" saver.save(sess, \"./my_model_tying_weights.ckpt\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"show_reconstructed_digits(X, outputs, \"./my_model_tying_weights.ckpt\")"
]
},
2016-10-06 14:08:46 +02:00
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Training one Autoencoder at a time in multiple graphs"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"There are many ways to train one Autoencoder at a time. The first approach it to train each Autoencoder using a different graph, then we create the Stacked Autoencoder by simply initializing it with the weights and biases copied from these Autoencoders."
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Let's create a function that will train one autoencoder and return the transformed training set (i.e., the output of the hidden layer) and the model parameters."
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"reset_graph()\n",
"\n",
"from functools import partial\n",
"\n",
"def train_autoencoder(X_train, n_neurons, n_epochs, batch_size,\n",
" learning_rate = 0.01, l2_reg = 0.0005, seed=42,\n",
" hidden_activation=tf.nn.elu,\n",
" output_activation=tf.nn.elu):\n",
2016-10-06 14:08:46 +02:00
" graph = tf.Graph()\n",
" with graph.as_default():\n",
" tf.set_random_seed(seed)\n",
"\n",
2016-10-06 14:08:46 +02:00
" n_inputs = X_train.shape[1]\n",
"\n",
" X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
" \n",
" my_dense_layer = partial(\n",
" tf.layers.dense,\n",
" kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),\n",
" kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_reg))\n",
"\n",
" hidden = my_dense_layer(X, n_neurons, activation=hidden_activation, name=\"hidden\")\n",
" outputs = my_dense_layer(hidden, n_inputs, activation=output_activation, name=\"outputs\")\n",
2016-10-06 14:08:46 +02:00
"\n",
" reconstruction_loss = tf.reduce_mean(tf.square(outputs - X))\n",
2016-10-06 14:08:46 +02:00
"\n",
" reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
" loss = tf.add_n([reconstruction_loss] + reg_losses)\n",
2016-10-06 14:08:46 +02:00
"\n",
" optimizer = tf.train.AdamOptimizer(learning_rate)\n",
" training_op = optimizer.minimize(loss)\n",
"\n",
2017-02-17 11:51:26 +01:00
" init = tf.global_variables_initializer()\n",
2016-10-06 14:08:46 +02:00
"\n",
" with tf.Session(graph=graph) as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = len(X_train) // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" indices = rnd.permutation(len(X_train))[:batch_size]\n",
" X_batch = X_train[indices]\n",
" sess.run(training_op, feed_dict={X: X_batch})\n",
" loss_train = reconstruction_loss.eval(feed_dict={X: X_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", loss_train)\n",
2016-10-06 14:08:46 +02:00
" params = dict([(var.name, var.eval()) for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)])\n",
" hidden_val = hidden.eval(feed_dict={X: X_train})\n",
" return hidden_val, params[\"hidden/kernel:0\"], params[\"hidden/bias:0\"], params[\"outputs/kernel:0\"], params[\"outputs/bias:0\"]"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Now let's train two Autoencoders. The first one is trained on the training data, and the second is trained on the previous Autoencoder's hidden layer output:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"hidden_output, W1, b1, W4, b4 = train_autoencoder(mnist.train.images, n_neurons=300, n_epochs=4, batch_size=150,\n",
" output_activation=None)\n",
2016-10-06 14:08:46 +02:00
"_, W2, b2, W3, b3 = train_autoencoder(hidden_output, n_neurons=150, n_epochs=4, batch_size=150)"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Finally, we can create a Stacked Autoencoder by simply reusing the weights and biases from the Autoencoders we just trained:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"n_inputs = 28*28\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"hidden1 = tf.nn.elu(tf.matmul(X, W1) + b1)\n",
"hidden2 = tf.nn.elu(tf.matmul(hidden1, W2) + b2)\n",
"hidden3 = tf.nn.elu(tf.matmul(hidden2, W3) + b3)\n",
"outputs = tf.matmul(hidden3, W4) + b4"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"show_reconstructed_digits(X, outputs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Training one Autoencoder at a time in a single graph"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Another approach is to use a single graph. To do this, we create the graph for the full Stacked Autoencoder, but then we also add operations to train each Autoencoder independently: phase 1 trains the bottom and top layer (ie. the first Autoencoder) and phase 2 trains the two middle layers (ie. the second Autoencoder)."
]
},
{
"cell_type": "code",
"execution_count": 23,
2016-10-06 14:08:46 +02:00
"metadata": {
"collapsed": true
2016-10-06 14:08:46 +02:00
},
"outputs": [],
"source": [
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"n_inputs = 28 * 28\n",
"n_hidden1 = 300\n",
"n_hidden2 = 150 # codings\n",
"n_hidden3 = n_hidden1\n",
"n_outputs = n_inputs\n",
"\n",
"learning_rate = 0.01\n",
"l2_reg = 0.0001\n",
"\n",
"activation = tf.nn.elu\n",
"regularizer = tf.contrib.layers.l2_regularizer(l2_reg)\n",
"initializer = tf.contrib.layers.variance_scaling_initializer()\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"\n",
"weights1_init = initializer([n_inputs, n_hidden1])\n",
"weights2_init = initializer([n_hidden1, n_hidden2])\n",
"weights3_init = initializer([n_hidden2, n_hidden3])\n",
"weights4_init = initializer([n_hidden3, n_outputs])\n",
"\n",
"weights1 = tf.Variable(weights1_init, dtype=tf.float32, name=\"weights1\")\n",
"weights2 = tf.Variable(weights2_init, dtype=tf.float32, name=\"weights2\")\n",
"weights3 = tf.Variable(weights3_init, dtype=tf.float32, name=\"weights3\")\n",
"weights4 = tf.Variable(weights4_init, dtype=tf.float32, name=\"weights4\")\n",
"\n",
"biases1 = tf.Variable(tf.zeros(n_hidden1), name=\"biases1\")\n",
"biases2 = tf.Variable(tf.zeros(n_hidden2), name=\"biases2\")\n",
"biases3 = tf.Variable(tf.zeros(n_hidden3), name=\"biases3\")\n",
"biases4 = tf.Variable(tf.zeros(n_outputs), name=\"biases4\")\n",
"\n",
"hidden1 = activation(tf.matmul(X, weights1) + biases1)\n",
"hidden2 = activation(tf.matmul(hidden1, weights2) + biases2)\n",
"hidden3 = activation(tf.matmul(hidden2, weights3) + biases3)\n",
"outputs = tf.matmul(hidden3, weights4) + biases4\n",
"\n",
"reconstruction_loss = tf.reduce_mean(tf.square(outputs - X))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
2016-10-06 14:08:46 +02:00
"\n",
"with tf.name_scope(\"phase1\"):\n",
" phase1_outputs = tf.matmul(hidden1, weights4) + biases4 # bypass hidden2 and hidden3\n",
" phase1_reconstruction_loss = tf.reduce_mean(tf.square(phase1_outputs - X))\n",
2016-10-06 14:08:46 +02:00
" phase1_reg_loss = regularizer(weights1) + regularizer(weights4)\n",
" phase1_loss = phase1_reconstruction_loss + phase1_reg_loss\n",
2016-10-06 14:08:46 +02:00
" phase1_training_op = optimizer.minimize(phase1_loss)\n",
"\n",
"with tf.name_scope(\"phase2\"):\n",
" phase2_reconstruction_loss = tf.reduce_mean(tf.square(hidden3 - hidden1))\n",
2016-10-06 14:08:46 +02:00
" phase2_reg_loss = regularizer(weights2) + regularizer(weights3)\n",
" phase2_loss = phase2_reconstruction_loss + phase2_reg_loss\n",
" train_vars = [weights2, biases2, weights3, biases3]\n",
" phase2_training_op = optimizer.minimize(phase2_loss, var_list=train_vars) # freeze hidden1"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()\n",
2016-10-06 14:08:46 +02:00
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"training_ops = [phase1_training_op, phase2_training_op]\n",
"reconstruction_losses = [phase1_reconstruction_loss, phase2_reconstruction_loss]\n",
2016-10-06 14:08:46 +02:00
"n_epochs = [4, 4]\n",
"batch_sizes = [150, 150]\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for phase in range(2):\n",
" print(\"Training phase #{}\".format(phase + 1))\n",
" for epoch in range(n_epochs[phase]):\n",
" n_batches = mnist.train.num_examples // batch_sizes[phase]\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" X_batch, y_batch = mnist.train.next_batch(batch_sizes[phase])\n",
" sess.run(training_ops[phase], feed_dict={X: X_batch})\n",
" loss_train = reconstruction_losses[phase].eval(feed_dict={X: X_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", loss_train)\n",
2017-02-17 11:51:26 +01:00
" saver.save(sess, \"./my_model_one_at_a_time.ckpt\")\n",
" loss_test = reconstruction_loss.eval(feed_dict={X: mnist.test.images})\n",
" print(\"Test MSE:\", loss_test)"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Cache the frozen layer outputs"
]
},
{
"cell_type": "code",
"execution_count": 27,
2016-10-06 14:08:46 +02:00
"metadata": {
"scrolled": true
2016-10-06 14:08:46 +02:00
},
"outputs": [],
"source": [
"training_ops = [phase1_training_op, phase2_training_op]\n",
"reconstruction_losses = [phase1_reconstruction_loss, phase2_reconstruction_loss]\n",
2016-10-06 14:08:46 +02:00
"n_epochs = [4, 4]\n",
"batch_sizes = [150, 150]\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for phase in range(2):\n",
" print(\"Training phase #{}\".format(phase + 1))\n",
" if phase == 1:\n",
" hidden1_cache = hidden1.eval(feed_dict={X: mnist.train.images})\n",
2016-10-06 14:08:46 +02:00
" for epoch in range(n_epochs[phase]):\n",
" n_batches = mnist.train.num_examples // batch_sizes[phase]\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" if phase == 1:\n",
" indices = rnd.permutation(mnist.train.num_examples)\n",
" hidden1_batch = hidden1_cache[indices[:batch_sizes[phase]]]\n",
2016-10-06 14:08:46 +02:00
" feed_dict = {hidden1: hidden1_batch}\n",
" sess.run(training_ops[phase], feed_dict=feed_dict)\n",
" else:\n",
" X_batch, y_batch = mnist.train.next_batch(batch_sizes[phase])\n",
" feed_dict = {X: X_batch}\n",
" sess.run(training_ops[phase], feed_dict=feed_dict)\n",
" loss_train = reconstruction_losses[phase].eval(feed_dict=feed_dict)\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", loss_train)\n",
2017-02-17 11:51:26 +01:00
" saver.save(sess, \"./my_model_cache_frozen.ckpt\")\n",
" loss_test = reconstruction_loss.eval(feed_dict={X: mnist.test.images})\n",
" print(\"Test MSE:\", loss_test)"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Visualizing the Reconstructions"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
2016-10-06 14:08:46 +02:00
"source": [
"n_test_digits = 2\n",
"X_test = mnist.test.images[:n_test_digits]\n",
"\n",
"with tf.Session() as sess:\n",
" saver.restore(sess, \"./my_model_one_at_a_time.ckpt\") # not shown in the book\n",
" outputs_val = outputs.eval(feed_dict={X: X_test})\n",
"\n",
"def plot_image(image, shape=[28, 28]):\n",
" plt.imshow(image.reshape(shape), cmap=\"Greys\", interpolation=\"nearest\")\n",
" plt.axis(\"off\")\n",
"\n",
"for digit_index in range(n_test_digits):\n",
" plt.subplot(n_test_digits, 2, digit_index * 2 + 1)\n",
" plot_image(X_test[digit_index])\n",
" plt.subplot(n_test_digits, 2, digit_index * 2 + 2)\n",
" plot_image(outputs_val[digit_index])"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Visualizing the extracted features"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" saver.restore(sess, \"./my_model_one_at_a_time.ckpt\") # not shown in the book\n",
" weights1_val = weights1.eval()\n",
2016-10-06 14:08:46 +02:00
"\n",
"for i in range(5):\n",
" plt.subplot(1, 5, i + 1)\n",
" plot_image(weights1_val.T[i])\n",
2016-10-06 14:08:46 +02:00
"\n",
"save_fig(\"extracted_features_plot\") # not shown\n",
"plt.show() # not shown"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"# Unsupervised pretraining"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Let's create a small neural network for MNIST classification:"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"n_inputs = 28 * 28\n",
"n_hidden1 = 300\n",
"n_hidden2 = 150\n",
"n_outputs = 10\n",
"\n",
"learning_rate = 0.01\n",
"l2_reg = 0.0005\n",
"\n",
"activation = tf.nn.elu\n",
"regularizer = tf.contrib.layers.l2_regularizer(l2_reg)\n",
"initializer = tf.contrib.layers.variance_scaling_initializer()\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"y = tf.placeholder(tf.int32, shape=[None])\n",
"\n",
"weights1_init = initializer([n_inputs, n_hidden1])\n",
"weights2_init = initializer([n_hidden1, n_hidden2])\n",
"weights3_init = initializer([n_hidden2, n_outputs])\n",
2016-10-06 14:08:46 +02:00
"\n",
"weights1 = tf.Variable(weights1_init, dtype=tf.float32, name=\"weights1\")\n",
"weights2 = tf.Variable(weights2_init, dtype=tf.float32, name=\"weights2\")\n",
"weights3 = tf.Variable(weights3_init, dtype=tf.float32, name=\"weights3\")\n",
"\n",
"biases1 = tf.Variable(tf.zeros(n_hidden1), name=\"biases1\")\n",
"biases2 = tf.Variable(tf.zeros(n_hidden2), name=\"biases2\")\n",
"biases3 = tf.Variable(tf.zeros(n_outputs), name=\"biases3\")\n",
2016-10-06 14:08:46 +02:00
"\n",
"hidden1 = activation(tf.matmul(X, weights1) + biases1)\n",
"hidden2 = activation(tf.matmul(hidden1, weights2) + biases2)\n",
"logits = tf.matmul(hidden2, weights3) + biases3\n",
"\n",
2017-02-17 11:51:26 +01:00
"cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n",
2016-10-06 14:08:46 +02:00
"reg_loss = regularizer(weights1) + regularizer(weights2) + regularizer(weights3)\n",
"loss = cross_entropy + reg_loss\n",
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"\n",
"correct = tf.nn.in_top_k(logits, y, 1)\n",
"accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n",
"\n",
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()\n",
2016-10-06 14:08:46 +02:00
"pretrain_saver = tf.train.Saver([weights1, weights2, biases1, biases2])\n",
"saver = tf.train.Saver()"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Regular training (without pretraining):"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_epochs = 4\n",
"batch_size = 150\n",
"n_labeled_instances = 20000\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = n_labeled_instances // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" indices = rnd.permutation(n_labeled_instances)[:batch_size]\n",
" X_batch, y_batch = mnist.train.images[indices], mnist.train.labels[indices]\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" accuracy_val = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train accuracy:\", accuracy_val, end=\" \")\n",
2017-02-17 11:51:26 +01:00
" saver.save(sess, \"./my_model_supervised.ckpt\")\n",
2016-10-06 14:08:46 +02:00
" accuracy_val = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})\n",
" print(\"Test accuracy:\", accuracy_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Now reusing the first two layers of the autoencoder we pretrained:"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_epochs = 4\n",
"batch_size = 150\n",
"n_labeled_instances = 20000\n",
"\n",
"#training_op = optimizer.minimize(loss, var_list=[weights3, biases3]) # Freeze layers 1 and 2 (optional)\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
2017-02-17 11:51:26 +01:00
" pretrain_saver.restore(sess, \"./my_model_cache_frozen.ckpt\")\n",
2016-10-06 14:08:46 +02:00
" for epoch in range(n_epochs):\n",
" n_batches = n_labeled_instances // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" indices = rnd.permutation(n_labeled_instances)[:batch_size]\n",
" X_batch, y_batch = mnist.train.images[indices], mnist.train.labels[indices]\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" accuracy_val = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train accuracy:\", accuracy_val, end=\"\\t\")\n",
2017-02-17 11:51:26 +01:00
" saver.save(sess, \"./my_model_supervised_pretrained.ckpt\")\n",
2016-10-06 14:08:46 +02:00
" accuracy_val = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})\n",
" print(\"Test accuracy:\", accuracy_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"# Stacked denoising Autoencoder"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: the book uses `tf.contrib.layers.dropout()` rather than `tf.layers.dropout()` (which did not exist when this chapter was written). It is now preferable to use `tf.layers.dropout()`, because anything in the contrib module may change or be deleted without notice. The `tf.layers.dropout()` function is almost identical to the `tf.contrib.layers.dropout()` function, except for a few minor differences. Most importantly:\n",
"* you must specify the dropout rate (`rate`) rather than the keep probability (`keep_prob`), where `rate` is simply equal to `1 - keep_prob`,\n",
"* the `is_training` parameter is renamed to `training`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using Gaussian noise:"
]
},
2016-10-06 14:08:46 +02:00
{
"cell_type": "code",
"execution_count": 33,
2016-10-06 14:08:46 +02:00
"metadata": {
"collapsed": true
2016-10-06 14:08:46 +02:00
},
"outputs": [],
"source": [
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"n_inputs = 28 * 28\n",
"n_hidden1 = 300\n",
"n_hidden2 = 150 # codings\n",
"n_hidden3 = n_hidden1\n",
"n_outputs = n_inputs\n",
"\n",
"learning_rate = 0.01"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"noise_level = 1.0\n",
2016-10-06 14:08:46 +02:00
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"X_noisy = X + noise_level * tf.random_normal(tf.shape(X))\n",
2016-10-06 14:08:46 +02:00
"\n",
"hidden1 = tf.layers.dense(X_noisy, n_hidden1, activation=tf.nn.relu,\n",
" name=\"hidden1\")\n",
"hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, # not shown in the book\n",
" name=\"hidden2\") # not shown\n",
"hidden3 = tf.layers.dense(hidden2, n_hidden3, activation=tf.nn.relu, # not shown\n",
" name=\"hidden3\") # not shown\n",
"outputs = tf.layers.dense(hidden3, n_outputs, name=\"outputs\") # not shown\n",
2016-10-06 14:08:46 +02:00
"\n",
"reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
2016-10-06 14:08:46 +02:00
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
"training_op = optimizer.minimize(reconstruction_loss)\n",
2016-10-06 14:08:46 +02:00
" \n",
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()\n",
2016-10-06 14:08:46 +02:00
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_epochs = 10\n",
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = mnist.train.num_examples // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch})\n",
" loss_train = reconstruction_loss.eval(feed_dict={X: X_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", loss_train)\n",
" saver.save(sess, \"./my_model_stacked_denoising_gaussian.ckpt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using dropout:"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"reset_graph()\n",
"\n",
"n_inputs = 28 * 28\n",
"n_hidden1 = 300\n",
"n_hidden2 = 150 # codings\n",
"n_hidden3 = n_hidden1\n",
"n_outputs = n_inputs\n",
"\n",
"learning_rate = 0.01"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"dropout_rate = 0.3\n",
"\n",
"training = tf.placeholder_with_default(False, shape=(), name='training')\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs])\n",
"X_drop = tf.layers.dropout(X, dropout_rate, training=training)\n",
"\n",
"hidden1 = tf.layers.dense(X_drop, n_hidden1, activation=tf.nn.relu,\n",
" name=\"hidden1\")\n",
"hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, # not shown in the book\n",
" name=\"hidden2\") # not shown\n",
"hidden3 = tf.layers.dense(hidden2, n_hidden3, activation=tf.nn.relu, # not shown\n",
" name=\"hidden3\") # not shown\n",
"outputs = tf.layers.dense(hidden3, n_outputs, name=\"outputs\") # not shown\n",
"\n",
"reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
2016-10-06 14:08:46 +02:00
"source": [
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
"training_op = optimizer.minimize(reconstruction_loss)\n",
" \n",
"init = tf.global_variables_initializer()\n",
"saver = tf.train.Saver()"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_epochs = 10\n",
"batch_size = 150\n",
"\n",
2016-10-06 14:08:46 +02:00
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = mnist.train.num_examples // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch, training: True})\n",
" loss_train = reconstruction_loss.eval(feed_dict={X: X_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", loss_train)\n",
" saver.save(sess, \"./my_model_stacked_denoising_dropout.ckpt\")"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"show_reconstructed_digits(X, outputs, \"./my_model_stacked_denoising_dropout.ckpt\")"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"# Sparse Autoencoder"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"p = 0.1\n",
"q = np.linspace(0.001, 0.999, 500)\n",
2016-10-06 14:08:46 +02:00
"kl_div = p * np.log(p / q) + (1 - p) * np.log((1 - p) / (1 - q))\n",
"mse = (p - q)**2\n",
"plt.plot([p, p], [0, 0.3], \"k:\")\n",
"plt.text(0.05, 0.32, \"Target\\nsparsity\", fontsize=14)\n",
"plt.plot(q, kl_div, \"b-\", label=\"KL divergence\")\n",
"plt.plot(q, mse, \"r--\", label=\"MSE\")\n",
"plt.legend(loc=\"upper left\")\n",
"plt.xlabel(\"Actual sparsity\")\n",
"plt.ylabel(\"Cost\", rotation=0)\n",
"plt.axis([0, 1, 0, 0.95])\n",
"save_fig(\"sparsity_loss_plot\")"
]
},
{
"cell_type": "code",
"execution_count": 43,
2016-10-06 14:08:46 +02:00
"metadata": {
"collapsed": true
2016-10-06 14:08:46 +02:00
},
"outputs": [],
"source": [
"reset_graph()\n",
"\n",
"n_inputs = 28 * 28\n",
"n_hidden1 = 1000 # sparse codings\n",
"n_outputs = n_inputs"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"def kl_divergence(p, q):\n",
" # Kullback Leibler divergence\n",
" return p * tf.log(p / q) + (1 - p) * tf.log((1 - p) / (1 - q))\n",
2016-10-06 14:08:46 +02:00
"\n",
"learning_rate = 0.01\n",
"sparsity_target = 0.1\n",
"sparsity_weight = 0.2\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, n_inputs]) # not shown in the book\n",
2016-10-06 14:08:46 +02:00
"\n",
"hidden1 = tf.layers.dense(X, n_hidden1, activation=tf.nn.sigmoid) # not shown\n",
"outputs = tf.layers.dense(hidden1, n_outputs) # not shown\n",
2016-10-06 14:08:46 +02:00
"\n",
2017-02-17 11:51:26 +01:00
"hidden1_mean = tf.reduce_mean(hidden1, axis=0) # batch mean\n",
2016-10-06 14:08:46 +02:00
"sparsity_loss = tf.reduce_sum(kl_divergence(sparsity_target, hidden1_mean))\n",
"reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE\n",
"loss = reconstruction_loss + sparsity_weight * sparsity_loss\n",
2016-10-06 14:08:46 +02:00
"\n",
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
"training_op = optimizer.minimize(loss)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()\n",
2016-10-06 14:08:46 +02:00
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_epochs = 100\n",
"batch_size = 1000\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = mnist.train.num_examples // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch})\n",
" reconstruction_loss_val, sparsity_loss_val, loss_val = sess.run([reconstruction_loss, sparsity_loss, loss], feed_dict={X: X_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train MSE:\", reconstruction_loss_val, \"\\tSparsity loss:\", sparsity_loss_val, \"\\tTotal loss:\", loss_val)\n",
2017-02-17 11:51:26 +01:00
" saver.save(sess, \"./my_model_sparse.ckpt\")"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
2017-02-17 11:51:26 +01:00
"show_reconstructed_digits(X, outputs, \"./my_model_sparse.ckpt\")"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the coding layer must output values from 0 to 1, which is why we use the sigmoid activation function:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"hidden1 = tf.layers.dense(X, n_hidden1, activation=tf.nn.sigmoid)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To speed up training, you can normalize the inputs between 0 and 1, and use the cross entropy instead of the MSE for the cost function:"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"logits = tf.layers.dense(hidden1, n_outputs)\n",
"outputs = tf.nn.sigmoid(logits)\n",
"\n",
"xentropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=X, logits=logits)\n",
"reconstruction_loss = tf.reduce_mean(xentropy)"
]
},
2016-10-06 14:08:46 +02:00
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"# Variational Autoencoder"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"from functools import partial\n",
"\n",
"n_inputs = 28 * 28\n",
2016-10-06 14:08:46 +02:00
"n_hidden1 = 500\n",
"n_hidden2 = 500\n",
"n_hidden3 = 20 # codings\n",
"n_hidden4 = n_hidden2\n",
"n_hidden5 = n_hidden1\n",
"n_outputs = n_inputs\n",
"learning_rate = 0.001\n",
"\n",
"initializer = tf.contrib.layers.variance_scaling_initializer()\n",
2016-10-06 14:08:46 +02:00
"\n",
"my_dense_layer = partial(\n",
" tf.layers.dense,\n",
" activation=tf.nn.elu,\n",
" kernel_initializer=initializer)\n",
2016-10-06 14:08:46 +02:00
"\n",
"X = tf.placeholder(tf.float32, [None, n_inputs])\n",
"hidden1 = my_dense_layer(X, n_hidden1)\n",
"hidden2 = my_dense_layer(hidden1, n_hidden2)\n",
"hidden3_mean = my_dense_layer(hidden2, n_hidden3, activation=None)\n",
"hidden3_sigma = my_dense_layer(hidden2, n_hidden3, activation=None)\n",
"noise = tf.random_normal(tf.shape(hidden3_sigma), dtype=tf.float32)\n",
"hidden3 = hidden3_mean + hidden3_sigma * noise\n",
"hidden4 = my_dense_layer(hidden3, n_hidden4)\n",
"hidden5 = my_dense_layer(hidden4, n_hidden5)\n",
"logits = my_dense_layer(hidden5, n_outputs, activation=None)\n",
2016-10-06 14:08:46 +02:00
"outputs = tf.sigmoid(logits)\n",
"\n",
"xentropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=X, logits=logits)\n",
"reconstruction_loss = tf.reduce_sum(xentropy)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"eps = 1e-10 # smoothing term to avoid computing log(0) which is NaN\n",
"latent_loss = 0.5 * tf.reduce_sum(\n",
" tf.square(hidden3_sigma) + tf.square(hidden3_mean)\n",
" - 1 - tf.log(eps + tf.square(hidden3_sigma)))"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"loss = reconstruction_loss + latent_loss\n",
2016-10-06 14:08:46 +02:00
"\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
2016-10-06 14:08:46 +02:00
"\n",
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()\n",
2016-10-06 14:08:46 +02:00
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"n_epochs = 50\n",
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = mnist.train.num_examples // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\")\n",
" sys.stdout.flush()\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch})\n",
" loss_val, reconstruction_loss_val, latent_loss_val = sess.run([loss, reconstruction_loss, latent_loss], feed_dict={X: X_batch})\n",
" print(\"\\r{}\".format(epoch), \"Train total loss:\", loss_val, \"\\tReconstruction loss:\", reconstruction_loss_val, \"\\tLatent loss:\", latent_loss_val)\n",
" saver.save(sess, \"./my_model_variational.ckpt\")"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"reset_graph()\n",
2016-10-06 14:08:46 +02:00
"\n",
"from functools import partial\n",
"\n",
"n_inputs = 28 * 28\n",
2016-10-06 14:08:46 +02:00
"n_hidden1 = 500\n",
"n_hidden2 = 500\n",
"n_hidden3 = 20 # codings\n",
"n_hidden4 = n_hidden2\n",
"n_hidden5 = n_hidden1\n",
"n_outputs = n_inputs\n",
"learning_rate = 0.001\n",
"\n",
"initializer = tf.contrib.layers.variance_scaling_initializer()\n",
"my_dense_layer = partial(\n",
" tf.layers.dense,\n",
" activation=tf.nn.elu,\n",
" kernel_initializer=initializer)\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_inputs])\n",
"hidden1 = my_dense_layer(X, n_hidden1)\n",
"hidden2 = my_dense_layer(hidden1, n_hidden2)\n",
"hidden3_mean = my_dense_layer(hidden2, n_hidden3, activation=None)\n",
"hidden3_gamma = my_dense_layer(hidden2, n_hidden3, activation=None)\n",
"noise = tf.random_normal(tf.shape(hidden3_gamma), dtype=tf.float32)\n",
"hidden3 = hidden3_mean + tf.exp(0.5 * hidden3_gamma) * noise\n",
"hidden4 = my_dense_layer(hidden3, n_hidden4)\n",
"hidden5 = my_dense_layer(hidden4, n_hidden5)\n",
"logits = my_dense_layer(hidden5, n_outputs, activation=None)\n",
"outputs = tf.sigmoid(logits)\n",
2016-10-06 14:08:46 +02:00
"\n",
"xentropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=X, logits=logits)\n",
"reconstruction_loss = tf.reduce_sum(xentropy)\n",
"latent_loss = 0.5 * tf.reduce_sum(\n",
" tf.exp(hidden3_gamma) + tf.square(hidden3_mean) - 1 - hidden3_gamma)\n",
"loss = reconstruction_loss + latent_loss\n",
2016-10-06 14:08:46 +02:00
"\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
2016-10-06 14:08:46 +02:00
"\n",
2017-02-17 11:51:26 +01:00
"init = tf.global_variables_initializer()\n",
2016-10-06 14:08:46 +02:00
"saver = tf.train.Saver()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate digits"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's train the model and generate a few random digits:"
]
},
2016-10-06 14:08:46 +02:00
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"n_digits = 60\n",
2016-10-06 14:08:46 +02:00
"n_epochs = 50\n",
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" n_batches = mnist.train.num_examples // batch_size\n",
" for iteration in range(n_batches):\n",
" print(\"\\r{}%\".format(100 * iteration // n_batches), end=\"\") # not shown in the book\n",
" sys.stdout.flush() # not shown\n",
2016-10-06 14:08:46 +02:00
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch})\n",
" loss_val, reconstruction_loss_val, latent_loss_val = sess.run([loss, reconstruction_loss, latent_loss], feed_dict={X: X_batch}) # not shown\n",
" print(\"\\r{}\".format(epoch), \"Train total loss:\", loss_val, \"\\tReconstruction loss:\", reconstruction_loss_val, \"\\tLatent loss:\", latent_loss_val) # not shown\n",
" saver.save(sess, \"./my_model_variational.ckpt\") # not shown\n",
" \n",
" codings_rnd = np.random.normal(size=[n_digits, n_hidden3])\n",
" outputs_val = outputs.eval(feed_dict={hidden3: codings_rnd})"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
2016-10-06 14:08:46 +02:00
"source": [
"plt.figure(figsize=(8,50)) # not shown in the book\n",
"for iteration in range(n_digits):\n",
" plt.subplot(n_digits, 10, iteration + 1)\n",
" plot_image(outputs_val[iteration])"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_rows = 6\n",
"n_cols = 10\n",
"plot_multiple_images(outputs_val.reshape(-1, 28, 28), n_rows, n_cols)\n",
"save_fig(\"generated_digits_plot\")\n",
"plt.show()"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Note that the latent loss is computed differently in this second variant:"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 58,
2016-10-06 14:08:46 +02:00
"metadata": {
"collapsed": true
2016-10-06 14:08:46 +02:00
},
"outputs": [],
"source": [
"latent_loss = 0.5 * tf.reduce_sum(\n",
" tf.exp(hidden3_gamma) + tf.square(hidden3_mean) - 1 - hidden3_gamma)"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Encode & Decode"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Encode:"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"n_digits = 3\n",
"X_test, y_test = mnist.test.next_batch(batch_size)\n",
"codings = hidden3\n",
"\n",
"with tf.Session() as sess:\n",
" saver.restore(sess, \"./my_model_variational.ckpt\")\n",
" codings_val = codings.eval(feed_dict={X: X_test})"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Decode:"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
2017-02-17 11:51:26 +01:00
" saver.restore(sess, \"./my_model_variational.ckpt\")\n",
" outputs_val = outputs.eval(feed_dict={codings: codings_val})"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Let's plot the reconstructions:"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
2016-10-06 14:08:46 +02:00
"outputs": [],
"source": [
"fig = plt.figure(figsize=(8, 2.5 * n_digits))\n",
"for iteration in range(n_digits):\n",
" plt.subplot(n_digits, 2, 1 + 2 * iteration)\n",
" plot_image(X_test[iteration])\n",
" plt.subplot(n_digits, 2, 2 + 2 * iteration)\n",
" plot_image(outputs_val[iteration])"
2016-10-06 14:08:46 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"## Interpolate digits"
]
},
{
"cell_type": "code",
"execution_count": 62,
2016-10-06 14:08:46 +02:00
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"n_iterations = 3\n",
"n_digits = 6\n",
"codings_rnd = np.random.normal(size=[n_digits, n_hidden3])\n",
"\n",
"with tf.Session() as sess:\n",
2017-02-17 11:51:26 +01:00
" saver.restore(sess, \"./my_model_variational.ckpt\")\n",
2016-10-06 14:08:46 +02:00
" target_codings = np.roll(codings_rnd, -1, axis=0)\n",
" for iteration in range(n_iterations + 1):\n",
" codings_interpolate = codings_rnd + (target_codings - codings_rnd) * iteration / n_iterations\n",
" outputs_val = outputs.eval(feed_dict={codings: codings_interpolate})\n",
" plt.figure(figsize=(11, 1.5*n_iterations))\n",
" for digit_index in range(n_digits):\n",
" plt.subplot(1, n_digits, digit_index + 1)\n",
" plot_image(outputs_val[digit_index])\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
2016-10-06 14:08:46 +02:00
},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
2016-10-06 14:08:46 +02:00
"source": [
"Coming soon..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
2016-10-06 14:08:46 +02:00
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
2016-10-06 14:08:46 +02:00
},
"nav_menu": {
"height": "381px",
"width": "453px"
},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}