2016-09-27 23:31:21 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Chapter 14 – Recurrent Neural Networks**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_This notebook contains all the sample code and solutions to the exercices in chapter 14._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# To support both python 2 and python 3\n",
"from __future__ import division, print_function, unicode_literals\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import numpy.random as rnd\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"rnd.seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"rnn\"\n",
"\n",
"def save_fig(fig_id, tight_layout=True):\n",
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format='png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then of course we will need TensorFlow:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Basic RNNs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Manual RNN"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_inputs = 3\n",
"n_neurons = 5\n",
"\n",
"X0 = tf.placeholder(tf.float32, [None, n_inputs])\n",
"X1 = tf.placeholder(tf.float32, [None, n_inputs])\n",
"\n",
"Wx = tf.Variable(tf.random_normal(shape=[n_inputs, n_neurons], dtype=tf.float32))\n",
"Wy = tf.Variable(tf.random_normal(shape=[n_neurons, n_neurons], dtype=tf.float32))\n",
"b = tf.Variable(tf.zeros([1, n_neurons], dtype=tf.float32))\n",
"\n",
"Y0 = tf.tanh(tf.matmul(X0, Wx) + b)\n",
"Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t = 0\n",
"X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t = 1\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" Y0_val, Y1_val = sess.run([Y0, Y1], feed_dict={X0: X0_batch, X1: X1_batch})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(Y0_val)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(Y1_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using `rnn()`"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_inputs = 3\n",
"n_neurons = 5\n",
"\n",
"X0 = tf.placeholder(tf.float32, [None, n_inputs])\n",
"X1 = tf.placeholder(tf.float32, [None, n_inputs])\n",
"\n",
"basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)\n",
"output_seqs, states = tf.nn.rnn(basic_cell, [X0, X1], dtype=tf.float32)\n",
"Y0, Y1 = output_seqs\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]])\n",
"X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]])\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" Y0_val, Y1_val = sess.run([Y0, Y1], feed_dict={X0: X0_batch, X1: X1_batch})"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"Y0_val"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"Y1_val"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from IPython.display import clear_output, Image, display, HTML\n",
"\n",
"def strip_consts(graph_def, max_const_size=32):\n",
" \"\"\"Strip large constant values from graph_def.\"\"\"\n",
" strip_def = tf.GraphDef()\n",
" for n0 in graph_def.node:\n",
" n = strip_def.node.add() \n",
" n.MergeFrom(n0)\n",
" if n.op == 'Const':\n",
" tensor = n.attr['value'].tensor\n",
" size = len(tensor.tensor_content)\n",
" if size > max_const_size:\n",
" tensor.tensor_content = \"b<stripped %d bytes>\"%size\n",
" return strip_def\n",
"\n",
"def show_graph(graph_def, max_const_size=32):\n",
" \"\"\"Visualize TensorFlow graph.\"\"\"\n",
" if hasattr(graph_def, 'as_graph_def'):\n",
" graph_def = graph_def.as_graph_def()\n",
" strip_def = strip_consts(graph_def, max_const_size=max_const_size)\n",
" code = \"\"\"\n",
" <script>\n",
" function load() {{\n",
" document.getElementById(\"{id}\").pbtxt = {data};\n",
" }}\n",
" </script>\n",
" <link rel=\"import\" href=\"https://tensorboard.appspot.com/tf-graph-basic.build.html\" onload=load()>\n",
" <div style=\"height:600px\">\n",
" <tf-graph-basic id=\"{id}\"></tf-graph-basic>\n",
" </div>\n",
" \"\"\".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))\n",
"\n",
" iframe = \"\"\"\n",
" <iframe seamless style=\"width:1200px;height:620px;border:0\" srcdoc=\"{}\"></iframe>\n",
" \"\"\".format(code.replace('\"', '"'))\n",
" display(HTML(iframe))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"show_graph(tf.get_default_graph())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Packing sequences"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_steps = 2\n",
"n_inputs = 3\n",
"n_neurons = 5\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"X_seqs = tf.unpack(tf.transpose(X, perm=[1, 0, 2]))\n",
"\n",
"basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)\n",
"output_seqs, states = tf.nn.rnn(basic_cell, X_seqs, dtype=tf.float32)\n",
"outputs = tf.transpose(tf.pack(output_seqs), perm=[1, 0, 2])\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_batch = np.array([\n",
" # t = 0 t = 1 \n",
" [[0, 1, 2], [9, 8, 7]], # instance 1\n",
" [[3, 4, 5], [0, 0, 0]], # instance 2\n",
" [[6, 7, 8], [6, 5, 4]], # instance 3\n",
" [[9, 0, 1], [3, 2, 1]], # instance 4\n",
" ])\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" outputs_val = outputs.eval(feed_dict={X: X_batch})"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(np.transpose(outputs_val, axes=[1, 0, 2])[1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using `dynamic_rnn()`"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_steps = 2\n",
"n_inputs = 3\n",
"n_neurons = 5\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"\n",
"basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)\n",
"outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_batch = np.array([\n",
" [[0, 1, 2], [9, 8, 7]], # instance 1\n",
" [[3, 4, 5], [0, 0, 0]], # instance 2\n",
" [[6, 7, 8], [6, 5, 4]], # instance 3\n",
" [[9, 0, 1], [3, 2, 1]], # instance 4\n",
" ])\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" print(\"outputs =\", outputs.eval(feed_dict={X: X_batch}))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"show_graph(tf.get_default_graph())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setting the sequence lengths"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_steps = 2\n",
"n_inputs = 3\n",
"n_neurons = 5\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"seq_length = tf.placeholder(tf.int32, [None])\n",
"\n",
"basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)\n",
"outputs, states = tf.nn.dynamic_rnn(basic_cell, X, sequence_length=seq_length, dtype=tf.float32)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_batch = np.array([\n",
" # step 0 step 1\n",
" [[0, 1, 2], [9, 8, 7]], # instance 1\n",
" [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors)\n",
" [[6, 7, 8], [6, 5, 4]], # instance 3\n",
" [[9, 0, 1], [3, 2, 1]], # instance 4\n",
" ])\n",
"seq_length_batch = np.array([2, 1, 2, 2])\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" outputs_val, states_val = sess.run(\n",
" [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(outputs_val)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(states_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training a sequence classifier"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"from tensorflow.contrib.layers import fully_connected\n",
"\n",
"n_steps = 28\n",
"n_inputs = 28\n",
"n_neurons = 150\n",
"n_outputs = 10\n",
"\n",
"learning_rate = 0.001\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"y = tf.placeholder(tf.int32, [None])\n",
"\n",
"with tf.variable_scope(\"\", initializer=tf.contrib.layers.variance_scaling_initializer()):\n",
" basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu)\n",
" outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)\n",
"\n",
"logits = fully_connected(states, n_outputs, activation_fn=None)\n",
"xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, y)\n",
"loss = tf.reduce_mean(xentropy)\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"correct = tf.nn.in_top_k(logits, y, 1)\n",
"accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from tensorflow.examples.tutorials.mnist import input_data\n",
"mnist = input_data.read_data_sets(\"/tmp/data/\")\n",
"X_test = mnist.test.images.reshape((-1, n_steps, n_inputs))\n",
"y_test = mnist.test.labels"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_epochs = 100\n",
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
2016-10-06 14:52:36 +02:00
" for iteration in range(mnist.train.num_examples // batch_size):\n",
2016-09-27 23:31:21 +02:00
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" X_batch = X_batch.reshape((-1, n_steps, n_inputs))\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n",
" acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test})\n",
" print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Multi-layer RNN"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"from tensorflow.contrib.layers import fully_connected\n",
"\n",
"n_steps = 28\n",
"n_inputs = 28\n",
"n_neurons1 = 150\n",
"n_neurons2 = 100\n",
"n_outputs = 10\n",
"\n",
"learning_rate = 0.001\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"y = tf.placeholder(tf.int32, [None])\n",
"\n",
"hidden1 = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons1, activation=tf.nn.relu)\n",
"hidden2 = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons2, activation=tf.nn.relu)\n",
"multi_layer_cell = tf.nn.rnn_cell.MultiRNNCell([hidden1, hidden2])\n",
"outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)\n",
"\n",
"logits = fully_connected(states, n_outputs, activation_fn=None)\n",
"xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, y)\n",
"loss = tf.reduce_mean(xentropy)\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"correct = tf.nn.in_top_k(logits, y, 1)\n",
"accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_epochs = 100\n",
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
2016-10-06 14:52:36 +02:00
" for iteration in range(mnist.train.num_examples // batch_size):\n",
2016-09-27 23:31:21 +02:00
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" X_batch = X_batch.reshape((-1, n_steps, n_inputs))\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n",
" acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test})\n",
" print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Time series"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"t_min, t_max = 0, 30\n",
"resolution = 0.1\n",
"\n",
"def time_series(t):\n",
" return t * np.sin(t) / 3 + 2 * np.sin(t*5)\n",
"\n",
"def next_batch(batch_size, n_steps):\n",
" t0 = np.random.rand(batch_size, 1) * (t_max - t_min - n_steps * resolution)\n",
" Ts = t0 + np.arange(0., n_steps + 1) * resolution\n",
" ys = time_series(Ts)\n",
" return ys[:, :-1].reshape(-1, n_steps, 1), ys[:, 1:].reshape(-1, n_steps, 1)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"t = np.linspace(t_min, t_max, (t_max - t_min) // resolution)\n",
"\n",
"n_steps = 20\n",
"t_instance = np.linspace(12.2, 12.2 + resolution * (n_steps + 1), n_steps + 1)\n",
"\n",
"plt.figure(figsize=(11,4))\n",
"plt.subplot(121)\n",
"plt.title(\"A time series (generated)\", fontsize=14)\n",
"plt.plot(t, time_series(t), label=r\"$t . \\sin(t) / 3 + 2 . \\sin(5t)$\")\n",
"plt.plot(t_instance[:-1], time_series(t_instance[:-1]), \"b-\", linewidth=3, label=\"A training instance\")\n",
"plt.legend(loc=\"lower left\", fontsize=14)\n",
"plt.axis([0, 30, -17, 13])\n",
"plt.xlabel(\"Time\")\n",
"plt.ylabel(\"Value\")\n",
"\n",
"plt.subplot(122)\n",
"plt.title(\"A training instance\", fontsize=14)\n",
"plt.plot(t_instance[:-1], time_series(t_instance[:-1]), \"bo\", markersize=10, label=\"instance\")\n",
"plt.plot(t_instance[1:], time_series(t_instance[1:]), \"w*\", markersize=10, label=\"target\")\n",
"plt.legend(loc=\"upper left\")\n",
"plt.xlabel(\"Time\")\n",
"\n",
"\n",
"save_fig(\"time_series_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_batch, y_batch = next_batch(1, n_steps)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"np.c_[X_batch[0], y_batch[0]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using an `OuputProjectionWrapper`"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"from tensorflow.contrib.layers import fully_connected\n",
"\n",
"n_steps = 20\n",
"n_inputs = 1\n",
"n_neurons = 100\n",
"n_outputs = 1\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])\n",
"\n",
"cell = tf.nn.rnn_cell.OutputProjectionWrapper(\n",
" tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu),\n",
" output_size=n_outputs)\n",
"outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)\n",
"\n",
"n_outputs = 1\n",
"learning_rate = 0.001\n",
"\n",
"loss = tf.reduce_sum(tf.square(outputs - y))\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_iterations = 1000\n",
"batch_size = 50\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for iteration in range(n_iterations):\n",
" X_batch, y_batch = next_batch(batch_size, n_steps)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" if iteration % 100 == 0:\n",
" mse = loss.eval(feed_dict={X: X_batch, y: y_batch})\n",
" print(iteration, \"\\tMSE:\", mse)\n",
" \n",
" X_new = time_series(np.array(t_instance[:-1].reshape(-1, n_steps, n_inputs)))\n",
" y_pred = sess.run(outputs, feed_dict={X: X_new})\n",
" print(y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"plt.title(\"Testing the model\", fontsize=14)\n",
"plt.plot(t_instance[:-1], time_series(t_instance[:-1]), \"bo\", markersize=10, label=\"instance\")\n",
"plt.plot(t_instance[1:], time_series(t_instance[1:]), \"w*\", markersize=10, label=\"target\")\n",
"plt.plot(t_instance[1:], y_pred[0,:,0], \"r.\", markersize=10, label=\"prediction\")\n",
"plt.legend(loc=\"upper left\")\n",
"plt.xlabel(\"Time\")\n",
"\n",
"save_fig(\"time_series_pred_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Without using an `OutputProjectionWrapper`"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"from tensorflow.contrib.layers import fully_connected\n",
"\n",
"n_steps = 20\n",
"n_inputs = 1\n",
"n_neurons = 100\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])\n",
"\n",
"basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu)\n",
"rnn_outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)\n",
"\n",
"n_outputs = 1\n",
"learning_rate = 0.001\n",
"\n",
"stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])\n",
"stacked_outputs = fully_connected(stacked_rnn_outputs, n_outputs, activation_fn=None)\n",
"outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])\n",
"\n",
"loss = tf.reduce_sum(tf.square(outputs - y))\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_iterations = 1000\n",
"batch_size = 50\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for iteration in range(n_iterations):\n",
" X_batch, y_batch = next_batch(batch_size, n_steps)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" if iteration % 100 == 0:\n",
" mse = loss.eval(feed_dict={X: X_batch, y: y_batch})\n",
" print(iteration, \"\\tMSE:\", mse)\n",
" \n",
" X_new = time_series(np.array(t_instance[:-1].reshape(-1, n_steps, n_inputs)))\n",
" y_pred = sess.run(outputs, feed_dict={X: X_new})\n",
" print(y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"plt.title(\"Testing the model\", fontsize=14)\n",
"plt.plot(t_instance[:-1], time_series(t_instance[:-1]), \"bo\", markersize=10, label=\"instance\")\n",
"plt.plot(t_instance[1:], time_series(t_instance[1:]), \"w*\", markersize=10, label=\"target\")\n",
"plt.plot(t_instance[1:], y_pred[0,:,0], \"r.\", markersize=10, label=\"prediction\")\n",
"plt.legend(loc=\"upper left\")\n",
"plt.xlabel(\"Time\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generating a creative new sequence"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_iterations = 2000\n",
"batch_size = 50\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for iteration in range(n_iterations):\n",
" X_batch, y_batch = next_batch(batch_size, n_steps)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" if iteration % 100 == 0:\n",
" mse = loss.eval(feed_dict={X: X_batch, y: y_batch})\n",
" print(iteration, \"\\tMSE:\", mse)\n",
"\n",
" sequence1 = [0. for i in range(n_steps)]\n",
" for iteration in range(len(t) - n_steps):\n",
" X_batch = np.array(sequence1[-n_steps:]).reshape(1, n_steps, 1)\n",
" y_pred = sess.run(outputs, feed_dict={X: X_batch})\n",
" sequence1.append(y_pred[0, -1, 0])\n",
"\n",
" sequence2 = [time_series(i * resolution + t_min + (t_max-t_min/3)) for i in range(n_steps)]\n",
" for iteration in range(len(t) - n_steps):\n",
" X_batch = np.array(sequence2[-n_steps:]).reshape(1, n_steps, 1)\n",
" y_pred = sess.run(outputs, feed_dict={X: X_batch})\n",
" sequence2.append(y_pred[0, -1, 0])\n",
"\n",
"plt.figure(figsize=(11,4))\n",
"plt.subplot(121)\n",
"plt.plot(t, sequence1, \"b-\")\n",
"plt.plot(t[:n_steps], sequence1[:n_steps], \"b-\", linewidth=3)\n",
"plt.xlabel(\"Time\")\n",
"plt.ylabel(\"Value\")\n",
"\n",
"plt.subplot(122)\n",
"plt.plot(t, sequence2, \"b-\")\n",
"plt.plot(t[:n_steps], sequence2[:n_steps], \"b-\", linewidth=3)\n",
"plt.xlabel(\"Time\")\n",
"#save_fig(\"creative_sequence_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deep RNN"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## MultiRNNCell"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_inputs = 2\n",
"n_neurons = 100\n",
"n_layers = 3\n",
"n_steps = 5\n",
"keep_prob = 0.5\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)\n",
"multi_layer_cell = tf.nn.rnn_cell.MultiRNNCell([basic_cell] * n_layers)\n",
"outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X_batch = rnd.rand(2, n_steps, n_inputs)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" init.run()\n",
" outputs_val, states_val = sess.run([outputs, states], feed_dict={X: X_batch})"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"outputs_val.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dropout"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"from tensorflow.contrib.layers import fully_connected\n",
"\n",
"n_inputs = 1\n",
"n_neurons = 100\n",
"n_layers = 3\n",
"n_steps = 20\n",
"n_outputs = 1\n",
"\n",
"keep_prob = 0.5\n",
"learning_rate = 0.001\n",
"\n",
"is_training = True\n",
"\n",
"def deep_rnn_with_dropout(X, y, is_training):\n",
" cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)\n",
" if is_training:\n",
" cell = tf.nn.rnn_cell.DropoutWrapper(cell, input_keep_prob=keep_prob)\n",
" multi_layer_cell = tf.nn.rnn_cell.MultiRNNCell([cell] * n_layers)\n",
" rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)\n",
"\n",
" stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])\n",
" stacked_outputs = fully_connected(stacked_rnn_outputs, n_outputs, activation_fn=None)\n",
" outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])\n",
"\n",
" loss = tf.reduce_sum(tf.square(outputs - y))\n",
" optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
" training_op = optimizer.minimize(loss)\n",
"\n",
" return outputs, loss, training_op\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])\n",
"outputs, loss, training_op = deep_rnn_with_dropout(X, y, is_training)\n",
"init = tf.initialize_all_variables()\n",
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_iterations = 2000\n",
"batch_size = 50\n",
"\n",
"with tf.Session() as sess:\n",
" if is_training:\n",
" init.run()\n",
" for iteration in range(n_iterations):\n",
" X_batch, y_batch = next_batch(batch_size, n_steps)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" if iteration % 100 == 0:\n",
" mse = loss.eval(feed_dict={X: X_batch, y: y_batch})\n",
" print(iteration, \"\\tMSE:\", mse)\n",
" save_path = saver.save(sess, \"/tmp/my_model.ckpt\")\n",
" else:\n",
" saver.restore(sess, \"/tmp/my_model.ckpt\")\n",
" X_new = time_series(np.array(t_instance[:-1].reshape(-1, n_steps, n_inputs)))\n",
" y_pred = sess.run(outputs, feed_dict={X: X_new})\n",
" \n",
" plt.title(\"Testing the model\", fontsize=14)\n",
" plt.plot(t_instance[:-1], time_series(t_instance[:-1]), \"bo\", markersize=10, label=\"instance\")\n",
" plt.plot(t_instance[1:], time_series(t_instance[1:]), \"w*\", markersize=10, label=\"target\")\n",
" plt.plot(t_instance[1:], y_pred[0,:,0], \"r.\", markersize=10, label=\"prediction\")\n",
" plt.legend(loc=\"upper left\")\n",
" plt.xlabel(\"Time\")\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# LSTM"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"from tensorflow.contrib.layers import fully_connected\n",
"\n",
"n_steps = 28\n",
"n_inputs = 28\n",
"n_neurons = 150\n",
"n_outputs = 10\n",
"\n",
"learning_rate = 0.001\n",
"\n",
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
"y = tf.placeholder(tf.int32, [None])\n",
"\n",
"lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=n_neurons, state_is_tuple=True)\n",
"multi_cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell]*3, state_is_tuple=True)\n",
"outputs, states = tf.nn.dynamic_rnn(multi_cell, X, dtype=tf.float32)\n",
"top_layer_h_state = states[-1][1]\n",
"logits = fully_connected(top_layer_h_state, n_outputs, activation_fn=None, scope=\"softmax\")\n",
"xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, y)\n",
"loss = tf.reduce_mean(xentropy, name=\"loss\")\n",
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)\n",
"correct = tf.nn.in_top_k(logits, y, 1)\n",
"accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n",
" \n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"states"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"top_layer_h_state"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_epochs = 10\n",
"batch_size = 150\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
2016-10-06 14:52:36 +02:00
" for iteration in range(mnist.train.num_examples // batch_size):\n",
2016-09-27 23:31:21 +02:00
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" X_batch = X_batch.reshape((batch_size, n_steps, n_inputs))\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n",
" acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test})\n",
" print(\"Epoch\", epoch, \"Train accuracy =\", acc_train, \"Test accuracy =\", acc_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributing layers across devices"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"\n",
"class DeviceCellWrapper(tf.nn.rnn_cell.RNNCell):\n",
" def __init__(self, device, cell):\n",
" self._cell = cell\n",
" self._device = device\n",
"\n",
" @property\n",
" def state_size(self):\n",
" return self._cell.state_size\n",
"\n",
" @property\n",
" def output_size(self):\n",
" return self._cell.output_size\n",
"\n",
" def __call__(self, inputs, state, scope=None):\n",
" with tf.device(self._device):\n",
" return self._cell(inputs, state, scope)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_inputs = 5\n",
"n_neurons = 100\n",
"devices = [\"/cpu:0\"]*5\n",
"n_steps = 20\n",
"X = tf.placeholder(tf.float32, shape=[None, n_steps, n_inputs])\n",
"lstm_cells = [DeviceCellWrapper(device, tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons))\n",
" for device in devices]\n",
"multi_layer_cell = tf.nn.rnn_cell.MultiRNNCell(lstm_cells)\n",
"outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" init.run()\n",
" print(sess.run(outputs, feed_dict={X: rnd.rand(2, n_steps, n_inputs)}))"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Coming soon**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
},
"nav_menu": {},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}