2016-05-07 17:41:41 +02:00
{
"cells": [
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
2016-09-27 23:31:21 +02:00
"**Chapter 2 – End-to-end Machine Learning project**\n",
2016-05-07 17:41:41 +02:00
"\n",
2016-09-27 16:39:16 +02:00
"*Welcome to Machine Learning Housing Corp.! Your task is to predict median house values in Californian districts, given a number of features from these districts.*\n",
"\n",
"*This notebook contains all the sample code and solutions to the exercices in chapter 2.*"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
2016-09-27 16:39:16 +02:00
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-09-27 16:39:16 +02:00
"# To support both python 2 and python 3\n",
2016-05-22 16:01:18 +02:00
"from __future__ import division, print_function, unicode_literals\n",
"\n",
2016-09-27 16:39:16 +02:00
"# Common imports\n",
"import numpy as np\n",
2016-05-22 18:07:41 +02:00
"import os\n",
"\n",
2016-09-27 16:39:16 +02:00
"# to make this notebook's output stable across runs\n",
2017-06-06 13:21:19 +02:00
"np.random.seed(42)\n",
2016-09-27 16:39:16 +02:00
"\n",
"# To plot pretty figures\n",
2016-05-22 16:01:18 +02:00
"%matplotlib inline\n",
2016-09-27 16:39:16 +02:00
"import matplotlib\n",
2016-05-22 16:01:18 +02:00
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
2016-09-27 16:39:16 +02:00
"# Where to save the figures\n",
2016-05-22 16:01:18 +02:00
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"end_to_end_project\"\n",
"\n",
2016-09-27 16:39:16 +02:00
"def save_fig(fig_id, tight_layout=True):\n",
2016-05-22 16:01:18 +02:00
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
2016-09-27 16:39:16 +02:00
" if tight_layout:\n",
" plt.tight_layout()\n",
2016-05-22 16:01:18 +02:00
" plt.savefig(path, format='png', dpi=300)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"# Get the data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"import os\n",
"import tarfile\n",
2016-11-03 23:47:11 +01:00
"from six.moves import urllib\n",
2016-05-07 17:41:41 +02:00
"\n",
2017-05-28 18:14:49 +02:00
"DOWNLOAD_ROOT = \"https://raw.githubusercontent.com/ageron/handson-ml/master/\"\n",
2016-05-07 17:41:41 +02:00
"HOUSING_PATH = \"datasets/housing\"\n",
2017-05-28 18:14:49 +02:00
"HOUSING_URL = DOWNLOAD_ROOT + HOUSING_PATH + \"/housing.tgz\"\n",
2016-05-07 17:41:41 +02:00
"\n",
"def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):\n",
2017-05-28 18:14:49 +02:00
" if not os.path.isdir(housing_path):\n",
2016-11-03 23:47:11 +01:00
" os.makedirs(housing_path)\n",
2016-05-07 17:41:41 +02:00
" tgz_path = os.path.join(housing_path, \"housing.tgz\")\n",
" urllib.request.urlretrieve(housing_url, tgz_path)\n",
" housing_tgz = tarfile.open(tgz_path)\n",
" housing_tgz.extractall(path=housing_path)\n",
" housing_tgz.close()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 3,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"fetch_housing_data()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 4,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": true,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"def load_housing_data(housing_path=HOUSING_PATH):\n",
" csv_path = os.path.join(housing_path, \"housing.csv\")\n",
" return pd.read_csv(csv_path)"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 5,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing = load_housing_data()\n",
"housing.head()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 6,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing.info()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 7,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing[\"ocean_proximity\"].value_counts()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 8,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing.describe()"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 9,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
2017-05-28 18:14:49 +02:00
"housing.hist(bins=50, figsize=(20,15))\n",
2016-05-22 16:01:18 +02:00
"save_fig(\"attribute_histogram_plots\")\n",
2016-05-07 17:41:41 +02:00
"plt.show()"
]
},
2017-05-28 18:14:49 +02:00
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"# to make this notebook's output identical at every run\n",
"np.random.seed(42)"
]
},
2016-05-07 17:41:41 +02:00
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"def split_train_test(data, test_ratio):\n",
2017-05-28 18:14:49 +02:00
" shuffled_indices = np.random.permutation(len(data))\n",
2016-05-07 17:41:41 +02:00
" test_set_size = int(len(data) * test_ratio)\n",
" test_indices = shuffled_indices[:test_set_size]\n",
" train_indices = shuffled_indices[test_set_size:]\n",
" return data.iloc[train_indices], data.iloc[test_indices]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"train_set, test_set = split_train_test(housing, 0.2)\n",
2017-05-28 18:14:49 +02:00
"print(len(train_set), \"train +\", len(test_set), \"test\")"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"def test_set_check(identifier, test_ratio, hash):\n",
2017-05-28 18:14:49 +02:00
" return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio\n",
2016-05-07 17:41:41 +02:00
"\n",
"def split_train_test_by_id(data, test_ratio, id_column, hash=hashlib.md5):\n",
" ids = data[id_column]\n",
" in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio, hash))\n",
" return data.loc[~in_test_set], data.loc[in_test_set]"
]
},
{
"cell_type": "code",
"execution_count": 14,
2017-05-28 18:14:49 +02:00
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"# This version supports both Python 2 and Python 3, instead of just Python 3.\n",
"def test_set_check(identifier, test_ratio, hash):\n",
" return bytearray(hash(np.int64(identifier)).digest())[-1] < 256 * test_ratio"
]
},
{
"cell_type": "code",
"execution_count": 15,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing_with_id = housing.reset_index() # adds an `index` column\n",
2017-05-28 18:14:49 +02:00
"train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, \"index\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_with_id[\"id\"] = housing[\"longitude\"] * 1000 + housing[\"latitude\"]\n",
"train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, \"id\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"test_set.head()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 18,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"from sklearn.model_selection import train_test_split\n",
2016-05-07 17:41:41 +02:00
"\n",
2017-05-28 18:14:49 +02:00
"train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"test_set.head()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 20,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing[\"median_income\"].hist()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 21,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing[\"income_cat\"] = np.ceil(housing[\"median_income\"] / 1.5)\n",
2017-05-28 18:14:49 +02:00
"housing[\"income_cat\"].where(housing[\"income_cat\"] < 5, 5.0, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"housing[\"income_cat\"].value_counts()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 23,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"from sklearn.model_selection import StratifiedShuffleSplit\n",
2016-05-07 17:41:41 +02:00
"\n",
2016-11-03 23:47:11 +01:00
"split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n",
"for train_index, test_index in split.split(housing, housing[\"income_cat\"]):\n",
" strat_train_set = housing.loc[train_index]\n",
" strat_test_set = housing.loc[test_index]"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 24,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing[\"income_cat\"].value_counts() / len(housing)"
]
},
{
"cell_type": "code",
"execution_count": 25,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"def income_cat_proportions(data):\n",
" return data[\"income_cat\"].value_counts() / len(data)\n",
"\n",
"train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)\n",
"\n",
"compare_props = pd.DataFrame({\n",
" \"Overall\": income_cat_proportions(housing),\n",
" \"Stratified\": income_cat_proportions(strat_test_set),\n",
" \"Random\": income_cat_proportions(test_set),\n",
"}).sort_index()\n",
"compare_props[\"Rand. %error\"] = 100 * compare_props[\"Random\"] / compare_props[\"Overall\"] - 100\n",
"compare_props[\"Strat. %error\"] = 100 * compare_props[\"Stratified\"] / compare_props[\"Overall\"] - 100"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 26,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"compare_props"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 27,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"for set_ in (strat_train_set, strat_test_set):\n",
" set_.drop(\"income_cat\", axis=1, inplace=True)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"# Discover and visualize the data to gain insights"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 28,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": true,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing = strat_train_set.copy()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 29,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-05-22 16:01:18 +02:00
"housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\")\n",
2016-09-27 16:39:16 +02:00
"save_fig(\"bad_visualization_plot\")"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 30,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-05-22 16:01:18 +02:00
"housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\", alpha=0.1)\n",
2016-09-27 16:39:16 +02:00
"save_fig(\"better_visualization_plot\")"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 31,
2016-05-07 17:41:41 +02:00
"metadata": {
2016-05-22 16:01:18 +02:00
"collapsed": false,
2017-02-17 11:51:26 +01:00
"deletable": true,
2017-05-28 18:14:49 +02:00
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\", alpha=0.4,\n",
" s=housing[\"population\"]/100, label=\"population\", figsize=(10,7),\n",
" c=\"median_house_value\", cmap=plt.get_cmap(\"jet\"), colorbar=True,\n",
2017-06-06 22:28:39 +02:00
" sharex=False) # sharex=False fixes a bug (temporary solution)\n",
" # See: https://github.com/pandas-dev/pandas/issues/10611\n",
" # Thanks to Wilmer Arellano for pointing it out.\n",
2016-05-22 16:01:18 +02:00
"plt.legend()\n",
2017-05-28 18:14:49 +02:00
"save_fig(\"housing_prices_scatterplot\")"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 32,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
2016-05-22 16:01:18 +02:00
"source": [
"import matplotlib.image as mpimg\n",
"california_img=mpimg.imread(PROJECT_ROOT_DIR + '/images/end_to_end_project/california.png')\n",
"ax = housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\", figsize=(10,7),\n",
" s=housing['population']/100, label=\"Population\",\n",
" c=\"median_house_value\", cmap=plt.get_cmap(\"jet\"),\n",
" colorbar=False, alpha=0.4,\n",
" )\n",
"plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5)\n",
"plt.ylabel(\"Latitude\", fontsize=14)\n",
"plt.xlabel(\"Longitude\", fontsize=14)\n",
"\n",
"prices = housing[\"median_house_value\"]\n",
"tick_values = np.linspace(prices.min(), prices.max(), 11)\n",
"cbar = plt.colorbar()\n",
"cbar.ax.set_yticklabels([\"$%dk\"%(round(v/1000)) for v in tick_values], fontsize=14)\n",
"cbar.set_label('Median House Value', fontsize=16)\n",
"\n",
"plt.legend(fontsize=16)\n",
2016-09-27 16:39:16 +02:00
"save_fig(\"california_housing_prices_plot\")\n",
2016-05-22 16:01:18 +02:00
"plt.show()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 33,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"corr_matrix = housing.corr()"
]
},
{
"cell_type": "code",
"execution_count": 34,
2016-05-22 16:01:18 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-22 16:01:18 +02:00
},
"outputs": [],
2016-05-07 17:41:41 +02:00
"source": [
"corr_matrix[\"median_house_value\"].sort_values(ascending=False)"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 35,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing.plot(kind=\"scatter\", x=\"median_income\", y=\"median_house_value\",\n",
2017-05-28 18:14:49 +02:00
" alpha=0.1)\n",
2016-05-22 16:01:18 +02:00
"plt.axis([0, 16, 0, 550000])\n",
2017-05-28 18:14:49 +02:00
"save_fig(\"income_vs_house_value_scatterplot\")"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 36,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from pandas.tools.plotting import scatter_matrix\n",
"\n",
2017-05-28 18:14:49 +02:00
"attributes = [\"median_house_value\", \"median_income\", \"total_rooms\",\n",
" \"housing_median_age\"]\n",
"scatter_matrix(housing[attributes], figsize=(12, 8))\n",
"save_fig(\"scatter_matrix_plot\")"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 37,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": true,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing[\"rooms_per_household\"] = housing[\"total_rooms\"]/housing[\"households\"]\n",
"housing[\"bedrooms_per_room\"] = housing[\"total_bedrooms\"]/housing[\"total_rooms\"]\n",
"housing[\"population_per_household\"]=housing[\"population\"]/housing[\"households\"]"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 38,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"corr_matrix = housing.corr()\n",
"corr_matrix[\"median_house_value\"].sort_values(ascending=False)"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 39,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing.plot(kind=\"scatter\", x=\"rooms_per_household\", y=\"median_house_value\",\n",
" alpha=0.2)\n",
"plt.axis([0, 5, 0, 520000])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 40,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing.describe()"
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"# Prepare the data for Machine Learning algorithms"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 41,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": true,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing = strat_train_set.drop(\"median_house_value\", axis=1)\n",
"housing_labels = strat_train_set[\"median_house_value\"].copy()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 42,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing.iloc[21:24]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_copy = housing.copy().iloc[21:24]\n",
"housing_copy.dropna(subset=[\"total_bedrooms\"]) # option 1"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_copy = housing.copy().iloc[21:24]\n",
"housing_copy.drop(\"total_bedrooms\", axis=1) # option 2"
]
},
{
"cell_type": "code",
"execution_count": 45,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing_copy = housing.copy().iloc[21:24]\n",
2017-05-28 18:14:49 +02:00
"median = housing_copy[\"total_bedrooms\"].median()\n",
"housing_copy[\"total_bedrooms\"].fillna(median, inplace=True) # option 3\n",
2016-05-07 17:41:41 +02:00
"housing_copy"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 46,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_copy.drop(\"total_bedrooms\", axis=1) # option 2"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"median = housing_copy[\"total_bedrooms\"].median()\n",
"housing_copy[\"total_bedrooms\"].fillna(median, inplace=True) # option 3\n",
"housing_copy"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"# Summary...\n",
"housing_copy = housing.copy().iloc[21:24]\n",
"housing_copy.dropna(subset=[\"total_bedrooms\"]) # option 1\n",
"\n",
"housing_copy = housing.copy().iloc[21:24]\n",
"housing_copy.drop(\"total_bedrooms\", axis=1) # option 2\n",
"\n",
"housing_copy = housing.copy().iloc[21:24]\n",
"median = housing_copy[\"total_bedrooms\"].median()\n",
"housing_copy[\"total_bedrooms\"].fillna(median, inplace=True) # option 3"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.preprocessing import Imputer\n",
"\n",
"imputer = Imputer(strategy=\"median\")"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_num = housing.drop(\"ocean_proximity\", axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 51,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"imputer.fit(housing_num)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 52,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"imputer.statistics_"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 53,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing_num.median().values"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 54,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-05-28 18:14:49 +02:00
"collapsed": true,
2017-02-17 11:51:26 +01:00
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"X = imputer.transform(housing_num)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 55,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-05-28 18:14:49 +02:00
"collapsed": true,
2017-02-17 11:51:26 +01:00
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing_tr = pd.DataFrame(X, columns=housing_num.columns)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 56,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing_tr.iloc[21:24]"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 57,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"imputer.strategy"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 58,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing_tr = pd.DataFrame(X, columns=housing_num.columns)\n",
"housing_tr.head()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 59,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.preprocessing import LabelEncoder\n",
"\n",
"encoder = LabelEncoder()\n",
"housing_cat = housing[\"ocean_proximity\"]\n",
"housing_cat_encoded = encoder.fit_transform(housing_cat)\n",
"housing_cat_encoded"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 60,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"print(encoder.classes_)"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 61,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.preprocessing import OneHotEncoder\n",
"\n",
"encoder = OneHotEncoder()\n",
"housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1,1))\n",
"housing_cat_1hot"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 62,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing_cat_1hot.toarray()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 63,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.preprocessing import LabelBinarizer\n",
"\n",
"encoder = LabelBinarizer()\n",
2017-05-28 18:14:49 +02:00
"housing_cat_1hot = encoder.fit_transform(housing_cat)\n",
"housing_cat_1hot"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 64,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.base import BaseEstimator, TransformerMixin\n",
"\n",
"rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6\n",
"\n",
"class CombinedAttributesAdder(BaseEstimator, TransformerMixin):\n",
" def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs\n",
" self.add_bedrooms_per_room = add_bedrooms_per_room\n",
" def fit(self, X, y=None):\n",
" return self # nothing else to do\n",
" def transform(self, X, y=None):\n",
" rooms_per_household = X[:, rooms_ix] / X[:, household_ix]\n",
" population_per_household = X[:, population_ix] / X[:, household_ix]\n",
" if self.add_bedrooms_per_room:\n",
" bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]\n",
2017-05-28 18:14:49 +02:00
" return np.c_[X, rooms_per_household, population_per_household,\n",
" bedrooms_per_room]\n",
2016-05-07 17:41:41 +02:00
" else:\n",
" return np.c_[X, rooms_per_household, population_per_household]\n",
"\n",
"attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)\n",
2017-05-28 18:14:49 +02:00
"housing_extra_attribs = attr_adder.transform(housing.values)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"housing_extra_attribs = pd.DataFrame(housing_extra_attribs, columns=list(housing.columns)+[\"rooms_per_household\", \"population_per_household\"])\n",
"housing_extra_attribs.head()"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 66,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.pipeline import Pipeline\n",
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"num_pipeline = Pipeline([\n",
" ('imputer', Imputer(strategy=\"median\")),\n",
" ('attribs_adder', CombinedAttributesAdder()),\n",
" ('std_scaler', StandardScaler()),\n",
" ])\n",
"\n",
2017-05-28 18:14:49 +02:00
"housing_num_tr = num_pipeline.fit_transform(housing_num)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 67,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing_num_tr"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.base import BaseEstimator, TransformerMixin\n",
2016-05-07 17:41:41 +02:00
"\n",
"class DataFrameSelector(BaseEstimator, TransformerMixin):\n",
" def __init__(self, attribute_names):\n",
" self.attribute_names = attribute_names\n",
" def fit(self, X, y=None):\n",
" return self\n",
" def transform(self, X):\n",
2017-05-28 18:14:49 +02:00
" return X[self.attribute_names].values"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 69,
2017-05-28 18:14:49 +02:00
"metadata": {
2017-06-06 13:21:19 +02:00
"collapsed": true,
"deletable": true,
"editable": true
2017-05-28 18:14:49 +02:00
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"num_attribs = list(housing_num)\n",
"cat_attribs = [\"ocean_proximity\"]\n",
"\n",
"num_pipeline = Pipeline([\n",
" ('selector', DataFrameSelector(num_attribs)),\n",
" ('imputer', Imputer(strategy=\"median\")),\n",
" ('attribs_adder', CombinedAttributesAdder()),\n",
" ('std_scaler', StandardScaler()),\n",
" ])\n",
"\n",
"cat_pipeline = Pipeline([\n",
" ('selector', DataFrameSelector(cat_attribs)),\n",
" ('label_binarizer', LabelBinarizer()),\n",
2017-06-01 09:53:20 +02:00
" ])"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 70,
2017-06-01 09:53:20 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.pipeline import FeatureUnion\n",
2016-05-07 17:41:41 +02:00
"\n",
2017-05-28 18:14:49 +02:00
"full_pipeline = FeatureUnion(transformer_list=[\n",
2016-05-07 17:41:41 +02:00
" (\"num_pipeline\", num_pipeline),\n",
" (\"cat_pipeline\", cat_pipeline),\n",
2017-05-28 18:14:49 +02:00
" ])"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 71,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"housing_prepared = full_pipeline.fit_transform(housing)\n",
2016-05-07 17:41:41 +02:00
"housing_prepared"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 72,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"housing_prepared.shape"
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
2017-06-01 09:53:20 +02:00
"# Select and train a model "
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 73,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"\n",
"lin_reg = LinearRegression()\n",
"lin_reg.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 74,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"# let's try the full pipeline on a few training instances\n",
"some_data = housing.iloc[:5]\n",
"some_labels = housing_labels.iloc[:5]\n",
2017-05-28 18:14:49 +02:00
"some_data_prepared = full_pipeline.transform(some_data)\n",
2016-05-07 17:41:41 +02:00
"\n",
2017-06-06 13:21:19 +02:00
"print(\"Predictions:\", lin_reg.predict(some_data_prepared))"
2017-05-28 18:14:49 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 75,
2017-05-28 18:14:49 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2017-06-06 13:21:19 +02:00
"print(\"Labels:\", list(some_labels))"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 76,
2017-05-28 18:14:49 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"some_data_prepared"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 77,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.metrics import mean_squared_error\n",
"\n",
"housing_predictions = lin_reg.predict(housing_prepared)\n",
"lin_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"lin_rmse = np.sqrt(lin_mse)\n",
"lin_rmse"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 78,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.metrics import mean_absolute_error\n",
"\n",
"lin_mae = mean_absolute_error(housing_labels, housing_predictions)\n",
"lin_mae"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 79,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.tree import DecisionTreeRegressor\n",
"\n",
2017-06-06 13:21:19 +02:00
"tree_reg = DecisionTreeRegressor(random_state=42)\n",
2017-05-28 18:14:49 +02:00
"tree_reg.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 80,
2017-05-28 18:14:49 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"housing_predictions = tree_reg.predict(housing_prepared)\n",
"tree_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"tree_rmse = np.sqrt(tree_mse)\n",
"tree_rmse"
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"# Fine-tune your model"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 81,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"from sklearn.model_selection import cross_val_score\n",
2016-05-07 17:41:41 +02:00
"\n",
2017-05-28 18:14:49 +02:00
"scores = cross_val_score(tree_reg, housing_prepared, housing_labels,\n",
" scoring=\"neg_mean_squared_error\", cv=10)\n",
"tree_rmse_scores = np.sqrt(-scores)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 82,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"def display_scores(scores):\n",
" print(\"Scores:\", scores)\n",
" print(\"Mean:\", scores.mean())\n",
" print(\"Standard deviation:\", scores.std())\n",
"\n",
"display_scores(tree_rmse_scores)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 83,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels,\n",
2016-11-03 23:47:11 +01:00
" scoring=\"neg_mean_squared_error\", cv=10)\n",
2016-05-07 17:41:41 +02:00
"lin_rmse_scores = np.sqrt(-lin_scores)\n",
"display_scores(lin_rmse_scores)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 84,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.ensemble import RandomForestRegressor\n",
"\n",
2017-06-06 13:21:19 +02:00
"forest_reg = RandomForestRegressor(random_state=42)\n",
2017-05-28 18:14:49 +02:00
"forest_reg.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 85,
2017-05-28 18:14:49 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"housing_predictions = forest_reg.predict(housing_prepared)\n",
"forest_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"forest_rmse = np.sqrt(forest_mse)\n",
"forest_rmse"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 86,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"from sklearn.model_selection import cross_val_score\n",
2016-05-07 17:41:41 +02:00
"\n",
"forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels,\n",
2016-11-03 23:47:11 +01:00
" scoring=\"neg_mean_squared_error\", cv=10)\n",
2016-05-07 17:41:41 +02:00
"forest_rmse_scores = np.sqrt(-forest_scores)\n",
"display_scores(forest_rmse_scores)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 87,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring=\"neg_mean_squared_error\", cv=10)\n",
2016-05-07 17:41:41 +02:00
"pd.Series(np.sqrt(-scores)).describe()"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 88,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from sklearn.svm import SVR\n",
"\n",
"svm_reg = SVR(kernel=\"linear\")\n",
"svm_reg.fit(housing_prepared, housing_labels)\n",
"housing_predictions = svm_reg.predict(housing_prepared)\n",
"svm_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"svm_rmse = np.sqrt(svm_mse)\n",
"svm_rmse"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 89,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"from sklearn.model_selection import GridSearchCV\n",
2016-05-07 17:41:41 +02:00
"\n",
"param_grid = [\n",
2017-05-28 18:14:49 +02:00
" {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},\n",
" {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},\n",
" ]\n",
2016-05-07 17:41:41 +02:00
"\n",
2017-06-06 13:21:19 +02:00
"forest_reg = RandomForestRegressor(random_state=42)\n",
2017-05-28 18:14:49 +02:00
"grid_search = GridSearchCV(forest_reg, param_grid, cv=5,\n",
" scoring='neg_mean_squared_error')\n",
2016-05-07 17:41:41 +02:00
"grid_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 90,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"grid_search.best_params_"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 91,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"grid_search.best_estimator_"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 92,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"cvres = grid_search.cv_results_\n",
"for mean_score, params in zip(cvres[\"mean_test_score\"], cvres[\"params\"]):\n",
" print(np.sqrt(-mean_score), params)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 93,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"pd.DataFrame(grid_search.cv_results_)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 94,
2016-11-03 23:47:11 +01:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-11-03 23:47:11 +01:00
},
"outputs": [],
"source": [
"from sklearn.model_selection import RandomizedSearchCV\n",
2016-05-07 17:41:41 +02:00
"from scipy.stats import randint\n",
"\n",
"param_distribs = {\n",
" 'n_estimators': randint(low=1, high=200),\n",
" 'max_features': randint(low=1, high=8),\n",
" }\n",
"\n",
2017-06-06 13:21:19 +02:00
"forest_reg = RandomForestRegressor(random_state=42)\n",
2016-05-07 17:41:41 +02:00
"rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,\n",
2017-06-06 13:21:19 +02:00
" n_iter=10, cv=5, scoring='neg_mean_squared_error', random_state=42)\n",
2016-05-07 17:41:41 +02:00
"rnd_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 95,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2016-11-03 23:47:11 +01:00
"cvres = rnd_search.cv_results_\n",
"for mean_score, params in zip(cvres[\"mean_test_score\"], cvres[\"params\"]):\n",
" print(np.sqrt(-mean_score), params)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 96,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"feature_importances = grid_search.best_estimator_.feature_importances_\n",
"feature_importances"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 97,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"extra_attribs = [\"rooms_per_hhold\", \"pop_per_hhold\", \"bedrooms_per_room\"]\n",
2016-05-07 17:41:41 +02:00
"cat_one_hot_attribs = list(encoder.classes_)\n",
"attributes = num_attribs + extra_attribs + cat_one_hot_attribs\n",
"sorted(zip(feature_importances, attributes), reverse=True)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 98,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-05-28 18:14:49 +02:00
"collapsed": true,
2017-02-17 11:51:26 +01:00
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"final_model = grid_search.best_estimator_\n",
"\n",
"X_test = strat_test_set.drop(\"median_house_value\", axis=1)\n",
"y_test = strat_test_set[\"median_house_value\"].copy()\n",
"\n",
2017-05-28 18:14:49 +02:00
"X_test_prepared = full_pipeline.transform(X_test)\n",
"final_predictions = final_model.predict(X_test_prepared)\n",
2016-05-07 17:41:41 +02:00
"\n",
"final_mse = mean_squared_error(y_test, final_predictions)\n",
2017-05-28 18:14:49 +02:00
"final_rmse = np.sqrt(final_mse)"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 99,
2017-05-28 18:14:49 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2016-05-07 17:41:41 +02:00
"final_rmse"
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"# Extra material"
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"## Label Binarizer hack\n",
"`LabelBinarizer`'s `fit_transform()` method only accepts one parameter `y` (because it was meant for labels, not predictors), so it does not work in a pipeline where the final estimator is a supervised estimator because in this case its `fit()` method takes two parameters `X` and `y`.\n",
"\n",
"This hack creates a supervision-friendly `LabelBinarizer`."
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 100,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"class SupervisionFriendlyLabelBinarizer(LabelBinarizer):\n",
" def fit_transform(self, X, y=None):\n",
" return super(SupervisionFriendlyLabelBinarizer, self).fit_transform(X)\n",
"\n",
"# Replace the Labelbinarizer with a SupervisionFriendlyLabelBinarizer\n",
"cat_pipeline.steps[1] = (\"label_binarizer\", SupervisionFriendlyLabelBinarizer())\n",
"\n",
"# Now you can create a full pipeline with a supervised predictor at the end.\n",
2017-05-28 18:14:49 +02:00
"full_pipeline_with_predictor = Pipeline([\n",
" (\"preparation\", full_pipeline),\n",
2016-05-07 17:41:41 +02:00
" (\"linear\", LinearRegression())\n",
" ])\n",
"\n",
2017-05-28 18:14:49 +02:00
"full_pipeline_with_predictor.fit(housing, housing_labels)\n",
"full_pipeline_with_predictor.predict(some_data)"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"## Model persistence using joblib"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 101,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": true,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"my_model = full_pipeline_with_predictor"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 102,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-05-28 18:14:49 +02:00
"collapsed": true,
2017-02-17 11:51:26 +01:00
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
2017-05-28 18:14:49 +02:00
"from sklearn.externals import joblib\n",
"joblib.dump(my_model, \"my_model.pkl\") # DIFF\n",
"#...\n",
"my_model_loaded = joblib.load(\"my_model.pkl\") # DIFF"
2016-05-07 17:41:41 +02:00
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-05-07 17:41:41 +02:00
"source": [
"## Example SciPy distributions for `RandomizedSearchCV`"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 103,
2016-05-07 17:41:41 +02:00
"metadata": {
2017-02-17 11:51:26 +01:00
"collapsed": false,
"deletable": true,
"editable": true
2016-05-07 17:41:41 +02:00
},
"outputs": [],
"source": [
"from scipy.stats import geom, expon\n",
2017-06-06 13:21:19 +02:00
"geom_distrib=geom(0.5).rvs(10000, random_state=42)\n",
"expon_distrib=expon(scale=1).rvs(10000, random_state=42)\n",
2016-05-07 17:41:41 +02:00
"plt.hist(geom_distrib, bins=50)\n",
"plt.show()\n",
"plt.hist(expon_distrib, bins=50)\n",
"plt.show()"
]
2016-09-27 16:39:16 +02:00
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-09-27 16:39:16 +02:00
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
2017-02-17 11:51:26 +01:00
"metadata": {
"deletable": true,
"editable": true
},
2016-09-27 16:39:16 +02:00
"source": [
2017-04-30 17:32:46 +02:00
"## 1."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"source": [
"Question: Try a Support Vector Machine regressor (`sklearn.svm.SVR`), with various hyperparameters such as `kernel=\"linear\"` (with various values for the `C` hyperparameter) or `kernel=\"rbf\"` (with various values for the `C` and `gamma` hyperparameters). Don't worry about what these hyperparameters mean for now. How does the best `SVR` predictor perform?"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 104,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.model_selection import GridSearchCV\n",
"\n",
"param_grid = [\n",
" {'kernel': ['linear'], 'C': [10., 30., 100., 300., 1000., 3000., 10000., 30000.0]},\n",
" {'kernel': ['rbf'], 'C': [1.0, 3.0, 10., 30., 100., 300., 1000.0],\n",
" 'gamma': [0.01, 0.03, 0.1, 0.3, 1.0, 3.0]},\n",
" ]\n",
"\n",
"svm_reg = SVR()\n",
2017-06-06 13:21:19 +02:00
"grid_search = GridSearchCV(svm_reg, param_grid, cv=5, scoring='neg_mean_squared_error', verbose=2, n_jobs=4)\n",
2017-04-30 17:32:46 +02:00
"grid_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"The best model achieves the following score (evaluated using 5-fold cross validation):"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 105,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"negative_mse = grid_search.best_score_\n",
"rmse = np.sqrt(-negative_mse)\n",
"rmse"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"That's much worse than the `RandomForestRegressor`. Let's check the best hyperparameters found:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 106,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"grid_search.best_params_"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"The linear kernel seems better than the RBF kernel. Notice that the value of `C` is the maximum tested value. When this happens you definitely want to launch the grid search again with higher values for `C` (removing the smallest values), because it is likely that higher values of `C` will be better."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 2."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Question: Try replacing `GridSearchCV` with `RandomizedSearchCV`."
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 107,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.model_selection import RandomizedSearchCV\n",
2017-05-03 19:46:23 +02:00
"from scipy.stats import expon, reciprocal\n",
2017-04-30 17:32:46 +02:00
"\n",
"# see https://docs.scipy.org/doc/scipy-0.19.0/reference/stats.html\n",
2017-05-03 19:46:23 +02:00
"# for `expon()` and `reciprocal()` documentation and more probability distribution functions.\n",
2017-04-30 17:32:46 +02:00
"\n",
"# Note: gamma is ignored when kernel is \"linear\"\n",
"param_distribs = {\n",
" 'kernel': ['linear', 'rbf'],\n",
2017-05-03 19:46:23 +02:00
" 'C': reciprocal(20, 200000),\n",
2017-04-30 17:32:46 +02:00
" 'gamma': expon(scale=1.0),\n",
" }\n",
"\n",
"svm_reg = SVR()\n",
"rnd_search = RandomizedSearchCV(svm_reg, param_distributions=param_distribs,\n",
2017-06-06 13:21:19 +02:00
" n_iter=50, cv=5, scoring='neg_mean_squared_error',\n",
" verbose=2, n_jobs=4, random_state=42)\n",
2017-04-30 17:32:46 +02:00
"rnd_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"The best model achieves the following score (evaluated using 5-fold cross validation):"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 108,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"negative_mse = rnd_search.best_score_\n",
"rmse = np.sqrt(-negative_mse)\n",
"rmse"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Now this is much closer to the performance of the `RandomForestRegressor` (but not quite there yet). Let's check the best hyperparameters found:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 109,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"rnd_search.best_params_"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"This time the search found a good set of hyperparameters for the RBF kernel. Randomized search tends to find better hyperparameters than grid search in the same amount of time."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Let's look at the exponential distribution we used, with `scale=1.0`. Note that some samples are much larger or smaller than 1.0, but when you look at the log of the distribution, you can see that most values are actually concentrated roughly in the range of exp(-2) to exp(+2), which is about 0.1 to 7.4."
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 110,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"expon_distrib = expon(scale=1.)\n",
2017-06-06 13:21:19 +02:00
"samples = expon_distrib.rvs(10000, random_state=42)\n",
2017-04-30 17:32:46 +02:00
"plt.figure(figsize=(10, 4))\n",
"plt.subplot(121)\n",
"plt.title(\"Exponential distribution (scale=1.0)\")\n",
"plt.hist(samples, bins=50)\n",
"plt.subplot(122)\n",
"plt.title(\"Log of this distribution\")\n",
"plt.hist(np.log(samples), bins=50)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"The distribution we used for `C` looks quite different: the scale of the samples is picked from a uniform distribution within a given range, which is why the right graph, which represents the log of the samples, looks roughly constant. This distribution is useful when you don't have a clue of what the target scale is:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 111,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
2017-05-03 19:46:23 +02:00
"reciprocal_distrib = reciprocal(20, 200000)\n",
2017-06-06 13:21:19 +02:00
"samples = reciprocal_distrib.rvs(10000, random_state=42)\n",
2017-04-30 17:32:46 +02:00
"plt.figure(figsize=(10, 4))\n",
"plt.subplot(121)\n",
2017-05-03 19:46:23 +02:00
"plt.title(\"Reciprocal distribution (scale=1.0)\")\n",
2017-04-30 17:32:46 +02:00
"plt.hist(samples, bins=50)\n",
"plt.subplot(122)\n",
"plt.title(\"Log of this distribution\")\n",
"plt.hist(np.log(samples), bins=50)\n",
"plt.show()"
]
},
2017-05-03 19:46:23 +02:00
{
"cell_type": "markdown",
2017-05-28 18:14:49 +02:00
"metadata": {
"deletable": true,
"editable": true
},
2017-05-03 19:46:23 +02:00
"source": [
"The reciprocal distribution is useful when you have no idea what the scale of the hyperparameter should be (indeed, as you can see on the figure on the right, all scales are equally likely, within the given range), whereas the exponential distribution is best when you know (more or less) what the scale of the hyperparameter should be."
]
},
2017-04-30 17:32:46 +02:00
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 3."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Question: Try adding a transformer in the preparation pipeline to select only the most important attributes."
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 112,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.base import BaseEstimator, TransformerMixin\n",
"\n",
"def indices_of_top_k(arr, k):\n",
" return np.sort(np.argpartition(np.array(arr), -k)[-k:])\n",
"\n",
"class TopFeatureSelector(BaseEstimator, TransformerMixin):\n",
" def __init__(self, feature_importances, k):\n",
" self.feature_importances = feature_importances\n",
" self.k = k\n",
" def fit(self, X, y=None):\n",
" self.feature_indices_ = indices_of_top_k(self.feature_importances, self.k)\n",
" return self\n",
" def transform(self, X):\n",
" return X[:, self.feature_indices_]"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Note: this feature selector assumes that you have already computed the feature importances somehow (for example using a `RandomForestRegressor`). You may be tempted to compute them directly in the `TopFeatureSelector`'s `fit()` method, however this would likely slow down grid/randomized search since the feature importances would have to be computed for every hyperparameter combination (unless you implement some sort of cache)."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Let's define the number of top features we want to keep:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 113,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"k = 5"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Now let's look for the indices of the top k features:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 114,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"top_k_feature_indices = indices_of_top_k(feature_importances, k)\n",
"top_k_feature_indices"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 115,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"np.array(attributes)[top_k_feature_indices]"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Let's double check that these are indeed the top k features:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 116,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"sorted(zip(feature_importances, attributes), reverse=True)[:k]"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Looking good... Now let's create a new pipeline that runs the previously defined preparation pipeline, and adds top k feature selection:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 117,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"preparation_and_feature_selection_pipeline = Pipeline([\n",
2017-05-28 18:14:49 +02:00
" ('preparation', full_pipeline),\n",
2017-04-30 17:32:46 +02:00
" ('feature_selection', TopFeatureSelector(feature_importances, k))\n",
"])"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 118,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_prepared_top_k_features = preparation_and_feature_selection_pipeline.fit_transform(housing)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Let's look at the features of the first 3 instances:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 119,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_prepared_top_k_features[0:3]"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Now let's double check that these are indeed the top k features:"
]
},
{
"cell_type": "code",
2017-06-06 13:21:19 +02:00
"execution_count": 120,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing_prepared[0:3, top_k_feature_indices]"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Works great! :)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 4."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Question: Try creating a single pipeline that does the full data preparation plus the final prediction."
2016-09-27 16:39:16 +02:00
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 121,
2016-09-27 16:39:16 +02:00
"metadata": {
2017-05-28 18:14:49 +02:00
"collapsed": false,
2017-02-17 11:51:26 +01:00
"deletable": true,
"editable": true
2016-09-27 16:39:16 +02:00
},
"outputs": [],
2017-04-30 17:32:46 +02:00
"source": [
"prepare_select_and_predict_pipeline = Pipeline([\n",
2017-05-28 18:14:49 +02:00
" ('preparation', full_pipeline),\n",
2017-04-30 17:32:46 +02:00
" ('feature_selection', TopFeatureSelector(feature_importances, k)),\n",
" ('svm_reg', SVR(**rnd_search.best_params_))\n",
"])"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 122,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"prepare_select_and_predict_pipeline.fit(housing, housing_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Let's try the full pipeline on a few instances:"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 123,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"some_data = housing.iloc[:4]\n",
"some_labels = housing_labels.iloc[:4]\n",
"\n",
"print(\"Predictions:\\t\", prepare_select_and_predict_pipeline.predict(some_data))\n",
"print(\"Labels:\\t\\t\", list(some_labels))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Well, the full pipeline seems to work fine. Of course, the predictions are not fantastic: they would be better if we used the best `RandomForestRegressor` that we found earlier, rather than the best `SVR`."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 5."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Question: Automatically explore some preparation options using `GridSearchCV`."
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 124,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"param_grid = [\n",
" {'preparation__num_pipeline__imputer__strategy': ['mean', 'median', 'most_frequent'],\n",
" 'feature_selection__k': [3, 4, 5, 6, 7]}\n",
"]\n",
"\n",
"grid_search_prep = GridSearchCV(prepare_select_and_predict_pipeline, param_grid, cv=5,\n",
" scoring='neg_mean_squared_error', verbose=2, n_jobs=4)\n",
"grid_search_prep.fit(housing, housing_labels)"
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 125,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"grid_search_prep.best_params_"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Great! It seems that we had the right imputer stragegy (mean), and apparently only the top 7 features are useful (out of 9), the last 2 seem to just add some noise."
]
},
{
"cell_type": "code",
2017-05-28 18:14:49 +02:00
"execution_count": 126,
2017-04-30 17:32:46 +02:00
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"housing.shape"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Congratulations! You already know quite a lot about Machine Learning. :)"
]
2016-05-07 17:41:41 +02:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2017-04-30 17:32:46 +02:00
"version": "3.5.3"
2016-05-07 17:41:41 +02:00
},
2016-09-27 16:39:16 +02:00
"nav_menu": {
"height": "279px",
"width": "309px"
},
2016-05-07 17:41:41 +02:00
"toc": {
2016-09-27 16:39:16 +02:00
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
2016-05-07 17:41:41 +02:00
"toc_cell": false,
2016-09-27 16:39:16 +02:00
"toc_section_display": "block",
2016-05-07 17:41:41 +02:00
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}