146 lines
5.6 KiB
Python
146 lines
5.6 KiB
Python
|
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Tests for slim.nets.overfeat."""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from nets import overfeat
|
||
|
|
||
|
slim = tf.contrib.slim
|
||
|
|
||
|
|
||
|
class OverFeatTest(tf.test.TestCase):
|
||
|
|
||
|
def testBuild(self):
|
||
|
batch_size = 5
|
||
|
height, width = 231, 231
|
||
|
num_classes = 1000
|
||
|
with self.test_session():
|
||
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
||
|
logits, _ = overfeat.overfeat(inputs, num_classes)
|
||
|
self.assertEquals(logits.op.name, 'overfeat/fc8/squeezed')
|
||
|
self.assertListEqual(logits.get_shape().as_list(),
|
||
|
[batch_size, num_classes])
|
||
|
|
||
|
def testFullyConvolutional(self):
|
||
|
batch_size = 1
|
||
|
height, width = 281, 281
|
||
|
num_classes = 1000
|
||
|
with self.test_session():
|
||
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
||
|
logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False)
|
||
|
self.assertEquals(logits.op.name, 'overfeat/fc8/BiasAdd')
|
||
|
self.assertListEqual(logits.get_shape().as_list(),
|
||
|
[batch_size, 2, 2, num_classes])
|
||
|
|
||
|
def testEndPoints(self):
|
||
|
batch_size = 5
|
||
|
height, width = 231, 231
|
||
|
num_classes = 1000
|
||
|
with self.test_session():
|
||
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
||
|
_, end_points = overfeat.overfeat(inputs, num_classes)
|
||
|
expected_names = ['overfeat/conv1',
|
||
|
'overfeat/pool1',
|
||
|
'overfeat/conv2',
|
||
|
'overfeat/pool2',
|
||
|
'overfeat/conv3',
|
||
|
'overfeat/conv4',
|
||
|
'overfeat/conv5',
|
||
|
'overfeat/pool5',
|
||
|
'overfeat/fc6',
|
||
|
'overfeat/fc7',
|
||
|
'overfeat/fc8'
|
||
|
]
|
||
|
self.assertSetEqual(set(end_points.keys()), set(expected_names))
|
||
|
|
||
|
def testModelVariables(self):
|
||
|
batch_size = 5
|
||
|
height, width = 231, 231
|
||
|
num_classes = 1000
|
||
|
with self.test_session():
|
||
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
||
|
overfeat.overfeat(inputs, num_classes)
|
||
|
expected_names = ['overfeat/conv1/weights',
|
||
|
'overfeat/conv1/biases',
|
||
|
'overfeat/conv2/weights',
|
||
|
'overfeat/conv2/biases',
|
||
|
'overfeat/conv3/weights',
|
||
|
'overfeat/conv3/biases',
|
||
|
'overfeat/conv4/weights',
|
||
|
'overfeat/conv4/biases',
|
||
|
'overfeat/conv5/weights',
|
||
|
'overfeat/conv5/biases',
|
||
|
'overfeat/fc6/weights',
|
||
|
'overfeat/fc6/biases',
|
||
|
'overfeat/fc7/weights',
|
||
|
'overfeat/fc7/biases',
|
||
|
'overfeat/fc8/weights',
|
||
|
'overfeat/fc8/biases',
|
||
|
]
|
||
|
model_variables = [v.op.name for v in slim.get_model_variables()]
|
||
|
self.assertSetEqual(set(model_variables), set(expected_names))
|
||
|
|
||
|
def testEvaluation(self):
|
||
|
batch_size = 2
|
||
|
height, width = 231, 231
|
||
|
num_classes = 1000
|
||
|
with self.test_session():
|
||
|
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
|
||
|
logits, _ = overfeat.overfeat(eval_inputs, is_training=False)
|
||
|
self.assertListEqual(logits.get_shape().as_list(),
|
||
|
[batch_size, num_classes])
|
||
|
predictions = tf.argmax(logits, 1)
|
||
|
self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
|
||
|
|
||
|
def testTrainEvalWithReuse(self):
|
||
|
train_batch_size = 2
|
||
|
eval_batch_size = 1
|
||
|
train_height, train_width = 231, 231
|
||
|
eval_height, eval_width = 281, 281
|
||
|
num_classes = 1000
|
||
|
with self.test_session():
|
||
|
train_inputs = tf.random_uniform(
|
||
|
(train_batch_size, train_height, train_width, 3))
|
||
|
logits, _ = overfeat.overfeat(train_inputs)
|
||
|
self.assertListEqual(logits.get_shape().as_list(),
|
||
|
[train_batch_size, num_classes])
|
||
|
tf.get_variable_scope().reuse_variables()
|
||
|
eval_inputs = tf.random_uniform(
|
||
|
(eval_batch_size, eval_height, eval_width, 3))
|
||
|
logits, _ = overfeat.overfeat(eval_inputs, is_training=False,
|
||
|
spatial_squeeze=False)
|
||
|
self.assertListEqual(logits.get_shape().as_list(),
|
||
|
[eval_batch_size, 2, 2, num_classes])
|
||
|
logits = tf.reduce_mean(logits, [1, 2])
|
||
|
predictions = tf.argmax(logits, 1)
|
||
|
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
|
||
|
|
||
|
def testForward(self):
|
||
|
batch_size = 1
|
||
|
height, width = 231, 231
|
||
|
with self.test_session() as sess:
|
||
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
||
|
logits, _ = overfeat.overfeat(inputs)
|
||
|
sess.run(tf.initialize_all_variables())
|
||
|
output = sess.run(logits)
|
||
|
self.assertTrue(output.any())
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
tf.test.main()
|