2016-09-27 23:31:21 +02:00
{
"cells": [
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2019-04-05 11:04:38 +02:00
"**Chapter 15 – Recurrent Neural Networks**"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2019-04-05 11:04:38 +02:00
"_This notebook contains all the sample code in chapter 15._"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2019-04-05 11:04:38 +02:00
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview."
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 1,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"# Python ≥3.5 is required\n",
"import sys\n",
"assert sys.version_info >= (3, 5)\n",
"\n",
"# Scikit-Learn ≥0.20 is required\n",
"import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n",
"\n",
"# TensorFlow ≥2.0-preview is required\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"assert tf.__version__ >= \"2.0\"\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt\n",
"mpl.rc('axes', labelsize=14)\n",
"mpl.rc('xtick', labelsize=12)\n",
"mpl.rc('ytick', labelsize=12)\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"rnn\"\n",
"IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n",
"os.makedirs(IMAGES_PATH, exist_ok=True)\n",
"\n",
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
" path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format=fig_extension, dpi=resolution)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Basic RNNs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate the Dataset"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 2,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"def generate_time_series(batch_size, n_steps):\n",
" freq1, freq2, offsets1, offsets2 = np.random.rand(4, batch_size, 1)\n",
" time = np.linspace(0, 1, n_steps)\n",
" series = 0.5 * np.sin((time - offsets1) * (freq1 * 10 + 10)) # wave 1\n",
" series += 0.2 * np.sin((time - offsets2) * (freq2 * 20 + 20)) # + wave 2\n",
" series += 0.1 * (np.random.rand(batch_size, n_steps) - 0.5) # + noise\n",
" return series[..., np.newaxis].astype(np.float32)"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 3,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"\n",
"n_steps = 50\n",
"series = generate_time_series(10000, n_steps + 1)\n",
"X_train, y_train = series[:7000, :n_steps], series[:7000, -1]\n",
"X_valid, y_valid = series[7000:9000, :n_steps], series[7000:9000, -1]\n",
"X_test, y_test = series[9000:, :n_steps], series[9000:, -1]"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 4,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"X_train.shape, y_train.shape"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 5,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"def plot_series(series, y=None, y_pred=None, x_label=\"$t$\", y_label=\"$x(t)$\"):\n",
" plt.plot(series, \".-\")\n",
" if y is not None:\n",
" plt.plot(n_steps, y, \"bx\", markersize=10)\n",
" if y_pred is not None:\n",
" plt.plot(n_steps, y_pred, \"ro\")\n",
" plt.grid(True)\n",
" if x_label:\n",
" plt.xlabel(x_label, fontsize=16)\n",
" if y_label:\n",
" plt.ylabel(y_label, fontsize=16, rotation=0)\n",
" plt.hlines(0, 0, 100, linewidth=1)\n",
" plt.axis([0, n_steps + 1, -1, 1])\n",
"\n",
"fig, axes = plt.subplots(nrows=1, ncols=3, sharey=True, figsize=(12, 4))\n",
"for col in range(3):\n",
" plt.sca(axes[col])\n",
" plot_series(X_valid[col, :, 0], y_valid[col, 0],\n",
" y_label=(\"$x(t)$\" if col==0 else None))\n",
"save_fig(\"time_series_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Computing Some Baselines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Naive predictions (just predict the last observed value):"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 6,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"y_pred = X_valid[:, -1]\n",
"np.mean(keras.losses.mean_squared_error(y_valid, y_pred))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 7,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"plot_series(X_valid[0, :, 0], y_valid[0, 0], y_pred[0, 0])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Linear predictions:"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 8,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.Flatten(input_shape=[50, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.Dense(1)\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\")\n",
"history = model.fit(X_train, y_train, epochs=20,\n",
" validation_data=(X_valid, y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 9,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"model.evaluate(X_valid, y_valid)"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 10,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"def plot_learning_curves(loss, val_loss):\n",
" plt.plot(np.arange(len(loss)) + 0.5, loss, \"b.-\", label=\"Training loss\")\n",
" plt.plot(np.arange(len(val_loss)) + 1, val_loss, \"r.-\", label=\"Validation loss\")\n",
" plt.gca().xaxis.set_major_locator(mpl.ticker.MaxNLocator(integer=True))\n",
" plt.axis([1, 20, 0, 0.05])\n",
" plt.legend(fontsize=14)\n",
" plt.xlabel(\"Epochs\")\n",
" plt.ylabel(\"Loss\")\n",
" plt.grid(True)\n",
"\n",
"plot_learning_curves(history.history[\"loss\"], history.history[\"val_loss\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 11,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"y_pred = model.predict(X_valid)\n",
"plot_series(X_valid[0, :, 0], y_valid[0, 0], y_pred[0, 0])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a Simple RNN"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 12,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
2019-04-15 18:09:10 +02:00
"model = keras.models.Sequential([\n",
" keras.layers.SimpleRNN(1, input_shape=[None, 1])\n",
"])\n",
2019-04-05 11:04:38 +02:00
"\n",
2019-04-15 18:09:10 +02:00
"optimizer = keras.optimizers.Adam(lr=0.005)\n",
"model.compile(loss=\"mse\", optimizer=optimizer)\n",
2019-04-05 11:04:38 +02:00
"history = model.fit(X_train, y_train, epochs=20,\n",
" validation_data=(X_valid, y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 13,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"model.evaluate(X_valid, y_valid)"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 14,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"plot_learning_curves(history.history[\"loss\"], history.history[\"val_loss\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 15,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"y_pred = model.predict(X_valid)\n",
"plot_series(X_valid[0, :, 0], y_valid[0, 0], y_pred[0, 0])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deep RNNs"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 16,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True),\n",
" keras.layers.SimpleRNN(1)\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\")\n",
"history = model.fit(X_train, y_train, epochs=20,\n",
" validation_data=(X_valid, y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 17,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"model.evaluate(X_valid, y_valid)"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 18,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"plot_learning_curves(history.history[\"loss\"], history.history[\"val_loss\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 19,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"y_pred = model.predict(X_valid)\n",
2019-04-15 18:09:10 +02:00
"plot_series(X_valid[0, :, 0], y_valid[0, 0], y_pred[0, 0])\n",
2019-04-05 11:04:38 +02:00
"plt.show()"
]
},
2019-04-15 18:09:10 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Make the second `SimpleRNN` layer return only the last output:"
]
},
2019-04-05 11:04:38 +02:00
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 20,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.SimpleRNN(20),\n",
" keras.layers.Dense(1)\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\")\n",
"history = model.fit(X_train, y_train, epochs=20,\n",
" validation_data=(X_valid, y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 21,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"model.evaluate(X_valid, y_valid)"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 22,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"plot_learning_curves(history.history[\"loss\"], history.history[\"val_loss\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 23,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"y_pred = model.predict(X_valid)\n",
2019-04-15 18:09:10 +02:00
"plot_series(X_valid[0, :, 0], y_valid[0, 0], y_pred[0, 0])\n",
2019-04-05 11:04:38 +02:00
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting Several Steps Ahead"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 24,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(43) # not 42, as it would give the first series in the train set\n",
"\n",
"series = generate_time_series(1, n_steps + 10)\n",
"X_new, Y_new = series[:, :n_steps], series[:, n_steps:]\n",
"X = X_new\n",
"for step_ahead in range(10):\n",
" y_pred_one = model.predict(X[:, step_ahead:])[:, np.newaxis, :]\n",
" X = np.concatenate([X, y_pred_one], axis=1)\n",
"\n",
"Y_pred = X[:, n_steps:]"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 25,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"Y_pred.shape"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 26,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"def plot_multiple_forecasts(X, Y, Y_pred):\n",
" n_steps = X.shape[1]\n",
" ahead = Y.shape[1]\n",
" plot_series(X[0, :, 0])\n",
" plt.plot(np.arange(n_steps, n_steps + ahead), Y_pred[0, :, 0], \"ro-\")\n",
" plt.plot(np.arange(n_steps, n_steps + ahead), Y[0, :, 0], \"bx-\", markersize=10)\n",
" plt.axis([0, n_steps + ahead, -1, 1])\n",
"\n",
"plot_multiple_forecasts(X_new, Y_new, Y_pred)\n",
2019-04-05 11:04:38 +02:00
"save_fig(\"forecast_ahead_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's create an RNN that predicts all 10 next values at once:"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 27,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"\n",
"n_steps = 50\n",
"series = generate_time_series(10000, n_steps + 10)\n",
"X_train, Y_train = series[:7000, :n_steps], series[:7000, -10:]\n",
"X_valid, Y_valid = series[7000:9000, :n_steps], series[7000:9000, -10:]\n",
"X_test, Y_test = series[9000:, :n_steps], series[9000:, -10:]"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 28,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(1)),\n",
" keras.layers.Lambda(lambda Y_pred: Y_pred[:, -10:])\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\")\n",
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 29,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(43)\n",
"\n",
"series = generate_time_series(1, 50 + 10)\n",
"X_new, Y_new = series[:, :50, :], series[:, -10:, :]\n",
2019-04-15 18:09:10 +02:00
"Y_pred = model.predict(X_new)[:, -10:, :]"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 30,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"plot_multiple_forecasts(X_new, Y_new, Y_pred)\n",
2019-04-05 11:04:38 +02:00
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"Now let's create an RNN that predicts the input sequence, shifted 10 steps into the future. That is, instead of just forecasting time steps 50 to 59 based on time steps 0 to 49, it will forecast time steps 10 to 59 based on time steps 0 to 49 (the time steps 10 to 49 are in the input, but the model is causal so at any time step it cannot see the future inputs):"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 31,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"\n",
"n_steps = 50\n",
"series = generate_time_series(10000, n_steps + 10)\n",
"X_train, Y_train = series[:7000, :n_steps], series[:7000, 10:]\n",
"X_valid, Y_valid = series[7000:9000, :n_steps], series[7000:9000, 10:]\n",
"X_test, Y_test = series[9000:, :n_steps], series[9000:, 10:]"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 32,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"X_train.shape, Y_train.shape"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 33,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(1))\n",
"])\n",
"\n",
"def last_10_time_steps_mse(Y_true, Y_pred):\n",
" return keras.metrics.mean_squared_error(Y_true[:, -10:], Y_pred[:, -10:])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_10_time_steps_mse])\n",
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 34,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(43)\n",
"\n",
"series = generate_time_series(1, 50 + 10)\n",
"X_new, Y_new = series[:, :50, :], series[:, 50:, :]\n",
"Y_pred = model.predict(X_new)[:, -10:, :]"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 35,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"plot_multiple_forecasts(X_new, Y_new, Y_pred)\n",
2019-04-05 11:04:38 +02:00
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deep RNN with Batch Norm"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 36,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.BatchNormalization(),\n",
" keras.layers.SimpleRNN(20, return_sequences=True),\n",
" keras.layers.BatchNormalization(),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(1))\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_10_time_steps_mse])\n",
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deep RNNs with Layer Norm"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 37,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"from tensorflow.keras.layers.experimental import LayerNormalization"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 38,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"class LNSimpleRNNCell(keras.layers.Layer):\n",
" def __init__(self, units, activation=\"tanh\", **kwargs):\n",
" super().__init__(**kwargs)\n",
" self.state_size = units\n",
" self.output_size = units\n",
" self.simple_rnn_cell = keras.layers.SimpleRNNCell(units,\n",
" activation=None)\n",
" self.layer_norm = LayerNormalization()\n",
" self.activation = keras.activations.get(activation)\n",
" def get_initial_state(self, inputs=None, batch_size=None, dtype=None):\n",
2019-04-15 18:09:10 +02:00
" if inputs is not None:\n",
" batch_size = tf.shape(inputs)[0]\n",
" dtype = inputs.dtype\n",
" return [tf.zeros([batch_size, self.state_size], dtype=dtype)]\n",
2019-04-05 11:04:38 +02:00
" def call(self, inputs, states):\n",
" outputs, new_states = self.simple_rnn_cell(inputs, states)\n",
" norm_outputs = self.activation(self.layer_norm(outputs))\n",
" return norm_outputs, [norm_outputs]"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 39,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.RNN(LNSimpleRNNCell(20), return_sequences=True,\n",
" input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.RNN(LNSimpleRNNCell(20), return_sequences=True),\n",
2019-04-15 18:09:10 +02:00
" keras.layers.TimeDistributed(keras.layers.Dense(1))\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_10_time_steps_mse])\n",
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating a Custom RNN Class"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"class MyRNN(keras.layers.Layer):\n",
" def __init__(self, cell, return_sequences=False, **kwargs):\n",
" super().__init__(**kwargs)\n",
" self.cell = cell\n",
" self.return_sequences = return_sequences\n",
" self.get_initial_state = getattr(\n",
" self.cell, \"get_initial_state\", self.fallback_initial_state)\n",
" def fallback_initial_state(self, inputs):\n",
" return [tf.zeros([self.cell.state_size], dtype=inputs.dtype)]\n",
" @tf.function\n",
" def call(self, inputs):\n",
" states = self.get_initial_state(inputs)\n",
" n_steps = tf.shape(inputs)[1]\n",
" if self.return_sequences:\n",
" sequences = tf.TensorArray(inputs.dtype, size=n_steps)\n",
" outputs = tf.zeros(shape=[n_steps, self.cell.output_size], dtype=inputs.dtype)\n",
" for step in tf.range(n_steps):\n",
" outputs, states = self.cell(inputs[:, step], states)\n",
" if self.return_sequences:\n",
" sequences = sequences.write(step, outputs)\n",
" if self.return_sequences:\n",
" return sequences.stack()\n",
" else:\n",
" return outputs"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
" MyRNN(LNSimpleRNNCell(20), return_sequences=True,\n",
" input_shape=[None, 1]),\n",
" MyRNN(LNSimpleRNNCell(20), return_sequences=True),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.TimeDistributed(keras.layers.Dense(1))\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_10_time_steps_mse])\n",
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# LSTMs"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 42,
2019-04-05 11:04:38 +02:00
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.LSTM(20, return_sequences=True, input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.LSTM(20, return_sequences=True),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(1))\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_10_time_steps_mse])\n",
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 43,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"model.evaluate(X_valid, Y_valid)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 44,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"plot_learning_curves(history.history[\"loss\"], history.history[\"val_loss\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(43)\n",
"\n",
"series = generate_time_series(1, 50 + 10)\n",
"X_new, Y_new = series[:, :50, :], series[:, 50:, :]\n",
"Y_pred = model.predict(X_new)[:, -10:, :]"
]
},
{
"cell_type": "code",
"execution_count": 46,
2019-04-05 11:04:38 +02:00
"metadata": {
2019-04-15 18:09:10 +02:00
"scrolled": true
2019-04-05 11:04:38 +02:00
},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"plot_multiple_forecasts(X_new, Y_new, Y_pred)\n",
2019-04-05 11:04:38 +02:00
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# GRUs"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 47,
2019-04-05 11:04:38 +02:00
"metadata": {
2019-04-15 18:09:10 +02:00
"scrolled": false
2019-04-05 11:04:38 +02:00
},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.GRU(20, return_sequences=True, input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.GRU(20, return_sequences=True),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(1))\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_10_time_steps_mse])\n",
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 48,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"model.evaluate(X_valid, Y_valid)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 49,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"plot_learning_curves(history.history[\"loss\"], history.history[\"val_loss\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(43)\n",
"\n",
"series = generate_time_series(1, 50 + 10)\n",
"X_new, Y_new = series[:, :50, :], series[:, 50:, :]\n",
"Y_pred = model.predict(X_new)[:, -10:, :]"
]
},
{
"cell_type": "code",
"execution_count": 51,
2019-04-05 11:04:38 +02:00
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"plot_multiple_forecasts(X_new, Y_new, Y_pred)\n",
2019-04-05 11:04:38 +02:00
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using One-Dimensional Convolutional Layers to Process Sequences"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"1D conv layer with kernel size 4, stride 2, VALID padding:\n",
"\n",
" |-----2----| |-----5---... |----23-----|\n",
" |-----1----| |-----4-----| ... |-----22----|\n",
" |-----0----| |-----3----| |---...-21---|\n",
"X: 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 43 44 45 46 47 48 49\n",
"Y: 10 11 12 13 14 15 16 17 18 19 20 21 22 ... 53 54 55 56 57 58 59\n",
"\n",
"Output:\n",
"\n",
"X: 0 1 2 3 4 5 ... 19 20 21 22 23\n",
"Y: 13 15 17 19 21 23 ... 51 53 55 57 59\n",
"```"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 52,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
"def last_5_time_steps_mse(Y_true, Y_pred):\n",
" return keras.metrics.mean_squared_error(Y_true[:, -5:], Y_pred[:, -5:])\n",
"\n",
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.Conv1D(filters=20, kernel_size=4, strides=2, padding=\"VALID\",\n",
" input_shape=[None, 1]),\n",
2019-04-05 11:04:38 +02:00
" keras.layers.GRU(20, return_sequences=True),\n",
" keras.layers.GRU(20, return_sequences=True),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(1))\n",
"])\n",
"\n",
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_5_time_steps_mse])\n",
"history = model.fit(X_train, Y_train[:, 3::2], epochs=20,\n",
" validation_data=(X_valid, Y_valid[:, 3::2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## WaveNet"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"C2 /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\.../\\ /\\ /\\ /\\ /\\ /\\ \n",
" / \\ / \\ / \\ / \\ / \\ / \\ / \\ / \\ / \\\n",
" / \\ / \\ / \\ / \\\n",
"C1 /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /\\ /.../\\ /\\ /\\ /\\ /\\ /\\ /\\\n",
"X: 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 43 44 45 46 47 48 49\n",
"Y: 10 11 12 13 14 15 16 17 18 19 20 21 22 ... 53 54 55 56 57 58 59\n",
"\n",
"Output:\n",
"\n",
"X: 0 1 2 3 4 5 ... 19 20 21 22 23\n",
"Y: 13 15 17 19 21 23 ... 51 53 55 57 59\n",
"```"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 53,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
2019-04-05 11:04:38 +02:00
"model = keras.models.Sequential()\n",
2019-04-15 18:09:10 +02:00
"model.add(keras.layers.InputLayer(input_shape=[None, 1]))\n",
2019-04-05 11:04:38 +02:00
"for rate in (1, 2, 4, 8) * 2:\n",
2019-04-15 18:09:10 +02:00
" model.add(keras.layers.Lambda(\n",
" lambda inputs: keras.backend.temporal_padding(inputs, (rate, 0))))\n",
2019-04-05 11:04:38 +02:00
" model.add(keras.layers.Conv1D(filters=20, kernel_size=2, padding=\"VALID\",\n",
2019-04-15 18:09:10 +02:00
" activation=\"relu\", dilation_rate=rate))\n",
"model.add(keras.layers.Conv1D(filters=1, kernel_size=1))\n",
2019-04-05 11:04:38 +02:00
"model.compile(loss=\"mse\", optimizer=\"adam\", metrics=[last_10_time_steps_mse])\n",
2019-04-15 18:09:10 +02:00
"history = model.fit(X_train, Y_train, epochs=20,\n",
" validation_data=(X_valid, Y_valid))"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is the original WaveNet defined in the paper: it uses Gated Activation Units instead of ReLU and parametrized skip connections, plus it pads with zeros on the left to avoid getting shorter and shorter sequences:"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 54,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"from tensorflow import keras\n",
"\n",
"class GatedActivationUnit(keras.layers.Layer):\n",
" def __init__(self, activation=\"tanh\", **kwargs):\n",
" super().__init__(**kwargs)\n",
" self.activation = keras.activations.get(activation)\n",
" def call(self, inputs):\n",
" n_filters = inputs.shape[-1] // 2\n",
" linear_output = self.activation(inputs[..., :n_filters])\n",
" gate = keras.activations.sigmoid(inputs[..., n_filters:])\n",
" return self.activation(linear_output) * gate"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 55,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"def wavenet_residual_block(inputs, n_filters, dilation_rate):\n",
" z = keras.backend.temporal_padding(inputs, (dilation_rate, 0))\n",
" z = keras.layers.Conv1D(2 * n_filters, kernel_size=2,\n",
" dilation_rate=dilation_rate)(z)\n",
" z = GatedActivationUnit()(z)\n",
" z = keras.layers.Conv1D(n_filters, kernel_size=1)(z)\n",
" return keras.layers.Add()([z, inputs]), z"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 56,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
2019-04-05 11:04:38 +02:00
"\n",
"n_layers_per_block = 10\n",
"n_blocks = 3\n",
"n_filters = 128\n",
"n_outputs = 256\n",
"\n",
2019-04-15 18:09:10 +02:00
"inputs = keras.layers.Input(shape=[None, 1])\n",
"z = keras.backend.temporal_padding(inputs, (1, 0))\n",
"z = keras.layers.Conv1D(n_filters, kernel_size=2)(z)\n",
2019-04-05 11:04:38 +02:00
"skip_to_last = []\n",
"for dilation_rate in [2**i for i in range(n_layers_per_block)] * n_blocks:\n",
" z, skip = wavenet_residual_block(z, n_filters, dilation_rate)\n",
" skip_to_last.append(skip)\n",
"z = keras.activations.relu(keras.layers.Add()(skip_to_last))\n",
"z = keras.layers.Conv1D(n_filters, kernel_size=1, activation=\"relu\")(z)\n",
"Y_proba = keras.layers.Conv1D(n_outputs, kernel_size=1, activation=\"softmax\")(z)\n",
"\n",
"model = keras.models.Model(inputs=[inputs], outputs=[Y_proba])"
]
},
2019-04-15 18:09:10 +02:00
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n",
"history = model.fit(X_train, Y_train, epochs=2, validation_data=(X_valid, Y_valid))"
]
},
2019-04-05 11:04:38 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"### Splitting a sequence into batches of shuffled windows"
2019-04-05 11:04:38 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "markdown",
2019-04-05 11:04:38 +02:00
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"For example, let's split the sequence 0 to 14 into windows of length 5, each shifted by 2 (e.g.,`[0, 1, 2, 3, 4]`, `[2, 3, 4, 5, 6]`, etc.), then shuffle them, and split them into inputs (the first 4 steps) and targets (the last 4 steps) (e.g., `[2, 3, 4, 5, 6]` would be split into `[[2, 3, 4, 5], [3, 4, 5, 6]]`), then create batches of 3 such input/target pairs:"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 58,
"metadata": {
"scrolled": true
},
2019-04-05 11:04:38 +02:00
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)\n",
"\n",
2019-04-15 18:09:10 +02:00
"n_steps = 5\n",
"dataset = tf.data.Dataset.from_tensor_slices(tf.range(15))\n",
"dataset = dataset.window(n_steps, shift=2, drop_remainder=True)\n",
"dataset = dataset.flat_map(lambda window: window.batch(n_steps))\n",
"dataset = dataset.shuffle(10).map(lambda window: (window[:-1], window[1:]))\n",
"dataset = dataset.batch(3).prefetch(1)\n",
"for index, (X_batch, Y_batch) in enumerate(dataset):\n",
" print(\"_\" * 20, \"Batch\", index, \"\\nX_batch\")\n",
" print(X_batch.numpy())\n",
" print(\"=\" * 5, \"\\nY_batch\")\n",
" print(Y_batch.numpy())"
2019-04-05 11:04:38 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "markdown",
2019-04-05 11:04:38 +02:00
"metadata": {},
"source": [
"# Char-RNN"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 59,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"shakespeare_url = \"https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\"\n",
"filepath = keras.utils.get_file(\"shakespeare.txt\", shakespeare_url)\n",
"with open(filepath) as f:\n",
" shakespeare_text = f.read()"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 60,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"print(shakespeare_text[:148])"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 61,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"\"\".join(sorted(set(shakespeare_text.lower())))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 62,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"tokenizer = keras.preprocessing.text.Tokenizer(char_level=True)\n",
"tokenizer.fit_on_texts(shakespeare_text)"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 63,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"tokenizer.texts_to_sequences([\"First\"])"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 64,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"tokenizer.sequences_to_texts([[20, 6, 9, 8, 3]])"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 65,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"max_id = len(tokenizer.word_index) # number of distinct characters\n",
"dataset_size = tokenizer.document_count # total number of characters"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 66,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"[encoded] = np.array(tokenizer.texts_to_sequences([shakespeare_text])) - 1\n",
2019-04-05 11:04:38 +02:00
"train_size = dataset_size * 90 // 100\n",
"dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
"n_steps = 100\n",
"window_length = n_steps + 1 # target = input shifted 1 character ahead\n",
"dataset = dataset.repeat().window(window_length, shift=1, drop_remainder=True)"
]
},
{
"cell_type": "code",
"execution_count": 68,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"dataset = dataset.flat_map(lambda window: window.batch(window_length))"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 69,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 70,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"batch_size = 32\n",
"dataset = dataset.shuffle(10000).batch(batch_size)\n",
"dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 71,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"dataset = dataset.map(\n",
" lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 72,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"dataset = dataset.prefetch(1)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 73,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"for X_batch, Y_batch in dataset.take(1):\n",
" print(X_batch.shape, Y_batch.shape)"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 74,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential([\n",
2019-04-15 18:09:10 +02:00
" keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id],\n",
" dropout=0.2, recurrent_dropout=0.2),\n",
" keras.layers.GRU(128, return_sequences=True,\n",
" dropout=0.2, recurrent_dropout=0.2),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(max_id,\n",
" activation=\"softmax\"))\n",
2019-04-05 11:04:38 +02:00
"])\n",
"model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n",
"history = model.fit(dataset, steps_per_epoch=train_size // batch_size,\n",
2019-04-15 18:09:10 +02:00
" epochs=10)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 75,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"def preprocess(texts):\n",
" X = np.array(tokenizer.texts_to_sequences(texts)) - 1\n",
" return tf.one_hot(X, max_id)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 76,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"X_new = preprocess([\"How are yo\"])\n",
"Y_pred = model.predict_classes(X_new)\n",
"tokenizer.sequences_to_texts(Y_pred + 1)[0][-1] # 1st sentence, last char"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 77,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"tf.random.set_seed(42)\n",
"\n",
"tf.random.categorical([[np.log(0.5), np.log(0.4), np.log(0.1)]], num_samples=40).numpy()"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 78,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"def next_char(text, temperature=1):\n",
" X_new = preprocess([text])\n",
" y_proba = model.predict(X_new)[0, -1:, :]\n",
" rescaled_logits = tf.math.log(y_proba) / temperature\n",
" char_id = tf.random.categorical(rescaled_logits, num_samples=1) + 1\n",
" return tokenizer.sequences_to_texts(char_id.numpy())[0]"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 79,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"tf.random.set_seed(42)\n",
"\n",
"next_char(\"How are yo\", temperature=1)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 80,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"def complete_text(text, n_chars=50, temperature=1):\n",
" for _ in range(n_chars):\n",
2019-04-15 18:09:10 +02:00
" text += next_char(text, temperature)\n",
2019-04-05 11:04:38 +02:00
" return text"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 81,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"tf.random.set_seed(42)\n",
"\n",
"print(complete_text(\"t\", temperature=0.2))"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 82,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"print(complete_text(\"t\", temperature=1))"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 83,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"print(complete_text(\"t\", temperature=2))"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"### Stateful RNN"
2019-04-05 11:04:38 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "code",
"execution_count": 84,
2019-04-05 11:04:38 +02:00
"metadata": {},
2019-04-15 18:09:10 +02:00
"outputs": [],
2019-04-05 11:04:38 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"tf.random.set_seed(42)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 85,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])\n",
"dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)\n",
"dataset = dataset.flat_map(lambda window: window.batch(window_length))\n",
"dataset = dataset.repeat().batch(1)\n",
"dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))\n",
"dataset = dataset.map(\n",
" lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))\n",
"dataset = dataset.prefetch(1)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 86,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"batch_size = 32\n",
"encoded_parts = np.array_split(encoded[:train_size], batch_size)\n",
"datasets = []\n",
"for encoded_part in encoded_parts:\n",
" dataset = tf.data.Dataset.from_tensor_slices(encoded_part)\n",
" dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)\n",
" dataset = dataset.flat_map(lambda window: window.batch(window_length))\n",
" datasets.append(dataset)\n",
"dataset = tf.data.Dataset.zip(tuple(datasets)).map(lambda *windows: tf.stack(windows))\n",
"dataset = dataset.repeat().map(lambda windows: (windows[:, :-1], windows[:, 1:]))\n",
"dataset = dataset.map(\n",
" lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))\n",
"dataset = dataset.prefetch(1)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 87,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"model = keras.models.Sequential([\n",
" keras.layers.GRU(128, return_sequences=True, stateful=True,\n",
"# dropout=0.2, recurrent_dropout=0.2, # see TF issue #27829\n",
" batch_input_shape=[batch_size, None, max_id]),\n",
" keras.layers.GRU(128, return_sequences=True, stateful=True\n",
"# dropout=0.2, recurrent_dropout=0.2 # see TF issue #27829\n",
" ),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(max_id,\n",
" activation=\"softmax\"))\n",
"])"
2019-04-05 11:04:38 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "code",
"execution_count": 88,
2019-04-05 11:04:38 +02:00
"metadata": {},
2019-04-15 18:09:10 +02:00
"outputs": [],
2019-04-05 11:04:38 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"class ResetStatesCallback(keras.callbacks.Callback):\n",
" def on_epoch_begin(self, epoch, logs):\n",
" self.model.reset_states()"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 89,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n",
"steps_per_epoch = train_size // batch_size // n_steps\n",
"model.fit(dataset, steps_per_epoch=steps_per_epoch, epochs=50,\n",
" callbacks=[ResetStatesCallback()])"
2019-04-05 11:04:38 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "markdown",
2019-04-05 11:04:38 +02:00
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"To use the model with different batch sizes, we need to create a stateless copy. We can get rid of dropout since it is only used during training:"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 90,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"stateless_model = keras.models.Sequential([\n",
" keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id]),\n",
" keras.layers.GRU(128, return_sequences=True),\n",
" keras.layers.TimeDistributed(keras.layers.Dense(max_id,\n",
" activation=\"softmax\"))\n",
"])"
2019-04-05 11:04:38 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "markdown",
2019-04-05 11:04:38 +02:00
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"To set the weights, we first need to build the model (so the weights get created):"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 91,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"stateless_model.build(tf.TensorShape([None, None, max_id]))"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 92,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"stateless_model.set_weights(model.get_weights())\n",
"model = stateless_model"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 93,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
"tf.random.set_seed(42)\n",
2016-09-27 23:31:21 +02:00
"\n",
2019-04-15 18:09:10 +02:00
"print(complete_text(\"t\"))"
2019-04-05 11:04:38 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "markdown",
2019-04-05 11:04:38 +02:00
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"# Sentiment Analysis"
2016-09-27 23:31:21 +02:00
]
},
2019-04-05 11:04:38 +02:00
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 94,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
2019-04-15 18:09:10 +02:00
"source": [
"tf.random.set_seed(42)"
]
2019-04-05 11:04:38 +02:00
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "markdown",
2019-04-05 11:04:38 +02:00
"metadata": {},
2019-04-15 18:09:10 +02:00
"source": [
"You can load the IMDB dataset easily:"
]
2019-04-05 11:04:38 +02:00
},
2016-09-27 23:31:21 +02:00
{
2019-04-15 18:09:10 +02:00
"cell_type": "code",
"execution_count": 95,
2017-10-05 13:22:06 +02:00
"metadata": {},
2019-04-15 18:09:10 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"(X_train, y_test), (X_valid, y_test) = keras.datasets.imdb.load_data()"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 96,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"X_train[0][:10]"
2016-09-27 23:31:21 +02:00
]
},
{
2019-04-05 11:04:38 +02:00
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 97,
2017-10-05 13:22:06 +02:00
"metadata": {},
2019-04-05 11:04:38 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"word_index = keras.datasets.imdb.get_word_index()\n",
"id_to_word = {id_ + 3: word for word, id_ in word_index.items()}\n",
"for id_, token in enumerate((\"<pad>\", \"<sos>\", \"<unk>\")):\n",
" id_to_word[id_] = token\n",
"\" \".join([id_to_word[id_] for id_ in X_train[0][:10]])"
2016-09-27 23:31:21 +02:00
]
},
{
2019-04-05 11:04:38 +02:00
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 98,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"import tensorflow_datasets as tfds\n",
"\n",
"datasets, info = tfds.load(\"imdb_reviews\", as_supervised=True, with_info=True)"
2019-04-05 11:04:38 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 99,
2017-10-05 13:22:06 +02:00
"metadata": {},
2019-04-05 11:04:38 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"datasets.keys()"
2016-09-27 23:31:21 +02:00
]
},
2019-04-05 11:04:38 +02:00
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 100,
2019-04-05 11:04:38 +02:00
"metadata": {},
"outputs": [],
2019-04-15 18:09:10 +02:00
"source": [
"train_size = info.splits[\"train\"].num_examples\n",
"test_size = info.splits[\"test\"].num_examples"
]
2019-04-05 11:04:38 +02:00
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 101,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"train_size, test_size"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 102,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"for X_batch, y_batch in datasets[\"train\"].batch(2).take(1):\n",
" for review, label in zip(X_batch.numpy(), y_batch.numpy()):\n",
" print(\"Review:\", review.decode(\"utf-8\")[:200], \"...\")\n",
" print(\"Label:\", label, \"= Positive\" if label else \"= Negative\")\n",
" print()"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 103,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"def preprocess(X_batch, y_batch):\n",
" X_batch = tf.strings.substr(X_batch, 0, 300)\n",
" X_batch = tf.strings.regex_replace(X_batch, rb\"<br\\s*/?>\", b\" \")\n",
" X_batch = tf.strings.regex_replace(X_batch, b\"[^a-zA-Z']\", b\" \")\n",
" X_batch = tf.strings.split(X_batch)\n",
" return X_batch.to_tensor(default_value=b\"<pad>\"), y_batch"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 104,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"preprocess(X_batch, y_batch)"
2016-09-27 23:31:21 +02:00
]
},
{
2019-04-15 18:09:10 +02:00
"cell_type": "code",
"execution_count": 105,
2017-10-05 13:22:06 +02:00
"metadata": {},
2019-04-15 18:09:10 +02:00
"outputs": [],
2016-09-27 23:31:21 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"from collections import Counter\n",
"\n",
"vocabulary = Counter()\n",
"for X_batch, y_batch in datasets[\"train\"].batch(32).map(preprocess):\n",
" for review in X_batch:\n",
" vocabulary.update(list(review.numpy()))"
2016-09-27 23:31:21 +02:00
]
},
2018-12-25 14:54:14 +01:00
{
2019-04-15 18:09:10 +02:00
"cell_type": "code",
"execution_count": 106,
2018-12-25 14:54:14 +01:00
"metadata": {},
2019-04-15 18:09:10 +02:00
"outputs": [],
2018-12-25 14:54:14 +01:00
"source": [
2019-04-15 18:09:10 +02:00
"vocabulary.most_common()[:3]"
2018-12-25 14:54:14 +01:00
]
},
2016-09-27 23:31:21 +02:00
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 107,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"len(vocabulary)"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 108,
2017-10-27 16:19:15 +02:00
"metadata": {},
2017-06-05 19:18:20 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"vocab_size = 10000\n",
"truncated_vocabulary = [\n",
" word for word, count in vocabulary.most_common()[:vocab_size]]"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 109,
2017-10-27 16:19:15 +02:00
"metadata": {},
2017-06-05 19:18:20 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"word_to_id = {word: index for index, word in enumerate(truncated_vocabulary)}\n",
"for word in b\"This movie was faaaaaantastic\".split():\n",
" print(word_to_id.get(word) or vocab_size)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 110,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"words = tf.constant(truncated_vocabulary)\n",
"word_ids = tf.range(len(truncated_vocabulary), dtype=tf.int64)\n",
"vocab_init = tf.lookup.KeyValueTensorInitializer(words, word_ids)\n",
"num_oov_buckets = 1000\n",
"table = tf.lookup.StaticVocabularyTable(vocab_init, num_oov_buckets)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 111,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"table.lookup(tf.constant([b\"This movie was faaaaaantastic\".split()]))"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 112,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"def encode_words(X_batch, y_batch):\n",
" return table.lookup(X_batch), y_batch\n",
"\n",
"train_set = datasets[\"train\"].repeat().batch(32).map(preprocess)\n",
"train_set = train_set.map(encode_words).prefetch(1)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 113,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"for X_batch, y_batch in train_set.take(1):\n",
" print(X_batch)\n",
" print(y_batch)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 114,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"embed_size = 128\n",
"model = keras.models.Sequential([\n",
" keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size,\n",
" mask_zero=True, # not shown in the book\n",
" input_shape=[None]),\n",
" keras.layers.GRU(128, return_sequences=True),\n",
" keras.layers.GRU(128),\n",
" keras.layers.Dense(1, activation=\"sigmoid\")\n",
"])\n",
"model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
"history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"Or using manual masking:"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 115,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"K = keras.backend\n",
"embed_size = 128\n",
"inputs = keras.layers.Input(shape=[None])\n",
"mask = keras.layers.Lambda(lambda inputs: K.not_equal(inputs, 0))(inputs)\n",
"z = keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size)(inputs)\n",
"z = keras.layers.GRU(128, return_sequences=True)(z, mask=mask)\n",
"z = keras.layers.GRU(128)(z, mask=mask)\n",
"outputs = keras.layers.Dense(1, activation=\"sigmoid\")(z)\n",
"model = keras.models.Model(inputs=[inputs], outputs=[outputs])\n",
"model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
"history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reusing Pretrained Embeddings"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 116,
2017-10-27 16:19:15 +02:00
"metadata": {},
2017-06-05 19:18:20 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"tf.random.set_seed(42)"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 117,
2017-10-27 16:19:15 +02:00
"metadata": {},
2017-06-05 19:18:20 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"TFHUB_CACHE_DIR = os.path.join(os.curdir, \"my_tfhub_cache\")\n",
"os.environ[\"TFHUB_CACHE_DIR\"] = TFHUB_CACHE_DIR"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 118,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"import tensorflow_hub as hub\n",
2016-09-27 23:31:21 +02:00
"\n",
2019-04-15 18:09:10 +02:00
"model = keras.Sequential([\n",
" hub.KerasLayer(\"https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1\",\n",
" dtype=tf.string, input_shape=[], output_shape=[50]),\n",
" keras.layers.Dense(128, activation=\"relu\"),\n",
" keras.layers.Dense(1, activation=\"sigmoid\")\n",
"])\n",
"model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\",\n",
" metrics=[\"accuracy\"])"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 119,
2017-10-05 13:22:06 +02:00
"metadata": {},
2017-06-07 17:52:59 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"for dirpath, dirnames, filenames in os.walk(TFHUB_CACHE_DIR):\n",
" for filename in filenames:\n",
" print(os.path.join(dirpath, filename))"
2017-06-07 17:52:59 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 120,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"import tensorflow_datasets as tfds\n",
"\n",
"datasets, info = tfds.load(\"imdb_reviews\", as_supervised=True, with_info=True)\n",
"train_size = info.splits[\"train\"].num_examples\n",
"batch_size = 32\n",
"train_set = datasets[\"train\"].repeat().batch(batch_size).prefetch(1)\n",
"history = model.fit(train_set, steps_per_epoch=train_size // batch_size, epochs=5)"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"source": [
2019-04-15 18:09:10 +02:00
"## Automatic Translation"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 121,
2017-10-27 16:19:15 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"tf.random.set_seed(42)"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 122,
2017-10-27 16:19:15 +02:00
"metadata": {},
2017-06-05 19:18:20 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"vocab_size = 100\n",
"embed_size = 10"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 123,
2018-08-06 17:27:32 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"import tensorflow_addons as tfa\n",
2016-11-24 17:23:11 +01:00
"\n",
2019-04-15 18:09:10 +02:00
"encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n",
"decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n",
"sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)\n",
2016-11-24 17:23:11 +01:00
"\n",
2019-04-15 18:09:10 +02:00
"embeddings = keras.layers.Embedding(vocab_size, embed_size)\n",
"encoder_embeddings = embeddings(encoder_inputs)\n",
"decoder_embeddings = embeddings(decoder_inputs)\n",
2016-11-24 17:23:11 +01:00
"\n",
2019-04-15 18:09:10 +02:00
"encoder = keras.layers.LSTM(512, return_state=True)\n",
"encoder_outputs, state_h, state_c = encoder(encoder_embeddings)\n",
"encoder_state = [state_h, state_c]\n",
"\n",
"sampler = tfa.seq2seq.sampler.TrainingSampler()\n",
"\n",
"decoder_cell = keras.layers.LSTMCell(512)\n",
"output_layer = keras.layers.Dense(vocab_size)\n",
"decoder = tfa.seq2seq.basic_decoder.BasicDecoder(decoder_cell, sampler,\n",
" output_layer=output_layer)\n",
"final_outputs, final_state, final_sequence_lengths = decoder(\n",
" decoder_embeddings, initial_state=encoder_state,\n",
" sequence_length=sequence_lengths)\n",
"Y_proba = tf.nn.softmax(final_outputs.rnn_output)\n",
2016-11-24 17:23:11 +01:00
"\n",
2019-04-15 18:09:10 +02:00
"model = keras.models.Model(\n",
" inputs=[encoder_inputs, decoder_inputs, sequence_lengths],\n",
" outputs=[Y_proba])"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 124,
2018-08-06 17:27:32 +02:00
"metadata": {},
2017-06-05 19:18:20 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")"
2017-06-05 19:18:20 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 125,
2018-08-06 17:27:32 +02:00
"metadata": {},
2017-06-05 19:18:20 +02:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"X = np.random.randint(100, size=10*1000).reshape(1000, 10)\n",
"Y = np.random.randint(100, size=15*1000).reshape(1000, 15)\n",
"X_decoder = np.c_[np.zeros((1000, 1)), Y[:, :-1]]\n",
"seq_lengths = np.full([1000], 15)\n",
2016-11-24 17:23:11 +01:00
"\n",
2019-04-15 18:09:10 +02:00
"history = model.fit([X, X_decoder, seq_lengths], Y, epochs=2)"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"source": [
2019-04-15 18:09:10 +02:00
"### Bidirectional Recurrent Layers"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 126,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"model = keras.models.Sequential([\n",
" keras.layers.GRU(10, return_sequences=True, input_shape=[None, 10]),\n",
" keras.layers.Bidirectional(keras.layers.GRU(10, return_sequences=True))\n",
"])\n",
2016-11-24 17:23:11 +01:00
"\n",
2019-04-15 18:09:10 +02:00
"model.summary()"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"source": [
2019-04-15 18:09:10 +02:00
"### Positional Encoding"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 127,
2018-08-06 17:27:32 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"class PositionalEncoding(keras.layers.Layer):\n",
" def __init__(self, max_steps, max_dims, dtype=tf.float32, **kwargs):\n",
" super().__init__(dtype=dtype, **kwargs)\n",
" if max_dims % 2 == 1: max_dims += 1 # max_dims must be even\n",
" p, i = np.meshgrid(np.arange(max_steps), np.arange(max_dims // 2))\n",
" pos_emb = np.empty((1, max_steps, max_dims))\n",
" pos_emb[0, :, ::2] = np.sin(p / 10000**(2 * i / max_dims)).T\n",
" pos_emb[0, :, 1::2] = np.cos(p / 10000**(2 * i / max_dims)).T\n",
" self.positional_embedding = tf.constant(pos_emb.astype(self.dtype))\n",
" def call(self, inputs):\n",
" shape = tf.shape(inputs)\n",
" return inputs + self.positional_embedding[:, :shape[-2], :shape[-1]]"
2016-09-27 23:31:21 +02:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 128,
2018-08-06 17:27:32 +02:00
"metadata": {},
2016-09-27 23:31:21 +02:00
"outputs": [],
2016-11-24 17:23:11 +01:00
"source": [
2019-04-15 18:09:10 +02:00
"max_steps = 201\n",
"max_dims = 512\n",
"pos_emb = PositionalEncoding(max_steps, max_dims)\n",
"PE = pos_emb(np.zeros((1, max_steps, max_dims), np.float32))[0].numpy()"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 129,
2017-10-05 13:22:06 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"i1, i2, crop_i = 100, 101, 150\n",
"p1, p2, p3 = 22, 60, 35\n",
"fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(9, 5))\n",
"ax1.plot([p1, p1], [-1, 1], \"k--\", label=\"$p = {}$\".format(p1))\n",
"ax1.plot([p2, p2], [-1, 1], \"k--\", label=\"$p = {}$\".format(p2), alpha=0.5)\n",
"ax1.plot(p3, PE[p3, i1], \"bx\", label=\"$p = {}$\".format(p3))\n",
"ax1.plot(PE[:,i1], \"b-\", label=\"$i = {}$\".format(i1))\n",
"ax1.plot(PE[:,i2], \"r-\", label=\"$i = {}$\".format(i2))\n",
"ax1.plot([p1, p2], [PE[p1, i1], PE[p2, i1]], \"bo\")\n",
"ax1.plot([p1, p2], [PE[p1, i2], PE[p2, i2]], \"ro\")\n",
"ax1.legend(loc=\"center right\", fontsize=14, framealpha=0.95)\n",
"ax1.set_ylabel(\"$P_{(p,i)}$\", rotation=0, fontsize=16)\n",
"ax1.grid(True, alpha=0.3)\n",
"ax1.hlines(0, 0, max_steps - 1, color=\"k\", linewidth=1, alpha=0.3)\n",
"ax1.axis([0, max_steps - 1, -1, 1])\n",
"ax2.imshow(PE.T[:crop_i], cmap=\"gray\", interpolation=\"bilinear\", aspect=\"auto\")\n",
"ax2.hlines(i1, 0, max_steps - 1, color=\"b\")\n",
"cheat = 2 # need to raise the red line a bit, or else it hides the blue one\n",
"ax2.hlines(i2+cheat, 0, max_steps - 1, color=\"r\")\n",
"ax2.plot([p1, p1], [0, crop_i], \"k--\")\n",
"ax2.plot([p2, p2], [0, crop_i], \"k--\", alpha=0.5)\n",
"ax2.plot([p1, p2], [i2+cheat, i2+cheat], \"ro\")\n",
"ax2.plot([p1, p2], [i1, i1], \"bo\")\n",
"ax2.axis([0, max_steps - 1, 0, crop_i])\n",
"ax2.set_xlabel(\"$p$\", fontsize=16)\n",
"ax2.set_ylabel(\"$i$\", rotation=0, fontsize=16)\n",
"plt.savefig(\"positional_embedding_plot\")\n",
"plt.show()"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 130,
2018-08-06 17:27:32 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"embed_size = 512; max_steps = 500; vocab_size = 10000\n",
"encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n",
"decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n",
"embeddings = keras.layers.Embedding(vocab_size, embed_size)\n",
"encoder_embeddings = embeddings(encoder_inputs)\n",
"decoder_embeddings = embeddings(decoder_inputs)\n",
"positional_encoding = PositionalEncoding(max_steps, max_dims=embed_size)\n",
"encoder_in = positional_encoding(encoder_embeddings)\n",
"decoder_in = positional_encoding(decoder_embeddings)"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 131,
2018-08-06 17:27:32 +02:00
"metadata": {},
2016-11-24 17:23:11 +01:00
"outputs": [],
"source": [
2019-04-15 18:09:10 +02:00
"for N in range(6):\n",
" encoder_attn = keras.layers.Attention(use_scale=True)\n",
" encoder_in = encoder_attn([encoder_in, encoder_in])\n",
" masked_decoder_attn = keras.layers.Attention(use_scale=True, causal=True)\n",
" decoder_in = masked_decoder_attn([decoder_in, decoder_in])\n",
" decoder_attn = keras.layers.Attention(use_scale=True)\n",
" final_enc = decoder_attn([decoder_in, encoder_in])\n",
2016-11-24 17:23:11 +01:00
"\n",
2019-04-15 18:09:10 +02:00
"output_layer = keras.layers.TimeDistributed(\n",
" keras.layers.Dense(vocab_size, activation=\"softmax\"))\n",
"outputs = output_layer(final_enc)"
2016-11-24 17:23:11 +01:00
]
},
{
"cell_type": "markdown",
"metadata": {
2017-10-05 13:22:06 +02:00
"collapsed": true
2016-11-24 17:23:11 +01:00
},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
2017-10-05 13:22:06 +02:00
"metadata": {},
"source": [
"## 1. to 6."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See Appendix A."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Embedded Reber Grammars"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we need to build a function that generates strings based on a grammar. The grammar will be represented as a list of possible transitions for each state. A transition specifies the string to output (or a grammar to generate it) and the next state."
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 132,
2018-08-06 17:27:32 +02:00
"metadata": {},
2017-10-05 13:22:06 +02:00
"outputs": [],
"source": [
"np.random.seed(42)\n",
"\n",
"default_reber_grammar = [\n",
" [(\"B\", 1)], # (state 0) =B=>(state 1)\n",
" [(\"T\", 2), (\"P\", 3)], # (state 1) =T=>(state 2) or =P=>(state 3)\n",
" [(\"S\", 2), (\"X\", 4)], # (state 2) =S=>(state 2) or =X=>(state 4)\n",
" [(\"T\", 3), (\"V\", 5)], # and so on...\n",
" [(\"X\", 3), (\"S\", 6)],\n",
" [(\"P\", 4), (\"V\", 6)],\n",
" [(\"E\", None)]] # (state 6) =E=>(terminal state)\n",
"\n",
"embedded_reber_grammar = [\n",
" [(\"B\", 1)],\n",
" [(\"T\", 2), (\"P\", 3)],\n",
" [(default_reber_grammar, 4)],\n",
" [(default_reber_grammar, 5)],\n",
" [(\"T\", 6)],\n",
" [(\"P\", 6)],\n",
" [(\"E\", None)]]\n",
"\n",
"def generate_string(grammar):\n",
" state = 0\n",
" output = []\n",
" while state is not None:\n",
2018-08-06 17:27:32 +02:00
" index = np.random.randint(len(grammar[state]))\n",
" production, state = grammar[state][index]\n",
2017-10-05 13:22:06 +02:00
" if isinstance(production, list):\n",
" production = generate_string(grammar=production)\n",
" output.append(production)\n",
" return \"\".join(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's generate a few strings based on the default Reber grammar:"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 133,
2017-10-05 13:22:06 +02:00
"metadata": {},
"outputs": [],
"source": [
"for _ in range(25):\n",
" print(generate_string(default_reber_grammar), end=\" \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looks good. Now let's generate a few strings based on the embedded Reber grammar:"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 134,
2017-10-05 13:22:06 +02:00
"metadata": {},
"outputs": [],
"source": [
"for _ in range(25):\n",
" print(generate_string(embedded_reber_grammar), end=\" \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Okay, now we need a function to generate strings that do not respect the grammar. We could generate a random string, but the task would be a bit too easy, so instead we will generate a string that respects the grammar, and we will corrupt it by changing just one character:"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 135,
2018-08-06 17:27:32 +02:00
"metadata": {},
2017-10-05 13:22:06 +02:00
"outputs": [],
"source": [
"def generate_corrupted_string(grammar, chars=\"BEPSTVX\"):\n",
" good_string = generate_string(grammar)\n",
" index = np.random.randint(len(good_string))\n",
" good_char = good_string[index]\n",
2018-08-06 17:27:32 +02:00
" bad_char = np.random.choice(sorted(set(chars) - set(good_char)))\n",
2017-10-05 13:22:06 +02:00
" return good_string[:index] + bad_char + good_string[index + 1:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at a few corrupted strings:"
]
},
{
"cell_type": "code",
2019-04-15 18:09:10 +02:00
"execution_count": 136,
2017-10-05 13:22:06 +02:00
"metadata": {},
"outputs": [],
"source": [
"for _ in range(25):\n",
" print(generate_corrupted_string(embedded_reber_grammar), end=\" \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2019-04-15 18:09:10 +02:00
"To be continued..."
2017-10-05 13:22:06 +02:00
]
2016-09-27 23:31:21 +02:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
2017-10-18 09:44:57 +02:00
"version": 3
2016-09-27 23:31:21 +02:00
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2019-04-05 11:04:38 +02:00
"version": "3.6.8"
2016-09-27 23:31:21 +02:00
},
"nav_menu": {},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
2017-10-18 09:44:57 +02:00
"threshold": 6,
2016-09-27 23:31:21 +02:00
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
2017-10-05 13:22:06 +02:00
"nbformat_minor": 1
2016-09-27 23:31:21 +02:00
}