handson-ml/10_neural_nets_with_keras.i...

1637 lines
40 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Chapter 10 Introduction to Artificial Neural Networks with Keras**\n",
"\n",
"_This notebook contains all the sample code and solutions to the exercises in chapter 10._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Python ≥3.5 is required\n",
"import sys\n",
"assert sys.version_info >= (3, 5)\n",
"\n",
"# Scikit-Learn ≥0.20 is required\n",
"import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n",
"\n",
"# TensorFlow ≥2.0-preview is required\n",
"import tensorflow as tf\n",
"assert tf.__version__ >= \"2.0\"\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"np.random.seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt\n",
"mpl.rc('axes', labelsize=14)\n",
"mpl.rc('xtick', labelsize=12)\n",
"mpl.rc('ytick', labelsize=12)\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"ann\"\n",
"IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n",
"os.makedirs(IMAGES_PATH, exist_ok=True)\n",
"\n",
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
" path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format=fig_extension, dpi=resolution)\n",
"\n",
"# Ignore useless warnings (see SciPy issue #5998)\n",
"import warnings\n",
"warnings.filterwarnings(action=\"ignore\", message=\"^internal gelsd\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Perceptrons"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: we set `max_iter` and `tol` explicitly to avoid warnings about the fact that their default value will change in future versions of Scikit-Learn."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.datasets import load_iris\n",
"from sklearn.linear_model import Perceptron\n",
"\n",
"iris = load_iris()\n",
"X = iris.data[:, (2, 3)] # petal length, petal width\n",
"y = (iris.target == 0).astype(np.int)\n",
"\n",
"per_clf = Perceptron(max_iter=1000, tol=1e-3, random_state=42)\n",
"per_clf.fit(X, y)\n",
"\n",
"y_pred = per_clf.predict([[2, 0.5]])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"y_pred"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"a = -per_clf.coef_[0][0] / per_clf.coef_[0][1]\n",
"b = -per_clf.intercept_ / per_clf.coef_[0][1]\n",
"\n",
"axes = [0, 5, 0, 2]\n",
"\n",
"x0, x1 = np.meshgrid(\n",
" np.linspace(axes[0], axes[1], 500).reshape(-1, 1),\n",
" np.linspace(axes[2], axes[3], 200).reshape(-1, 1),\n",
" )\n",
"X_new = np.c_[x0.ravel(), x1.ravel()]\n",
"y_predict = per_clf.predict(X_new)\n",
"zz = y_predict.reshape(x0.shape)\n",
"\n",
"plt.figure(figsize=(10, 4))\n",
"plt.plot(X[y==0, 0], X[y==0, 1], \"bs\", label=\"Not Iris-Setosa\")\n",
"plt.plot(X[y==1, 0], X[y==1, 1], \"yo\", label=\"Iris-Setosa\")\n",
"\n",
"plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], \"k-\", linewidth=3)\n",
"from matplotlib.colors import ListedColormap\n",
"custom_cmap = ListedColormap(['#9898ff', '#fafab0'])\n",
"\n",
"plt.contourf(x0, x1, zz, cmap=custom_cmap)\n",
"plt.xlabel(\"Petal length\", fontsize=14)\n",
"plt.ylabel(\"Petal width\", fontsize=14)\n",
"plt.legend(loc=\"lower right\", fontsize=14)\n",
"plt.axis(axes)\n",
"\n",
"save_fig(\"perceptron_iris_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Activation functions"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def sigmoid(z):\n",
" return 1 / (1 + np.exp(-z))\n",
"\n",
"def relu(z):\n",
" return np.maximum(0, z)\n",
"\n",
"def derivative(f, z, eps=0.000001):\n",
" return (f(z + eps) - f(z - eps))/(2 * eps)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"z = np.linspace(-5, 5, 200)\n",
"\n",
"plt.figure(figsize=(11,4))\n",
"\n",
"plt.subplot(121)\n",
"plt.plot(z, np.sign(z), \"r-\", linewidth=1, label=\"Step\")\n",
"plt.plot(z, sigmoid(z), \"g--\", linewidth=2, label=\"Sigmoid\")\n",
"plt.plot(z, np.tanh(z), \"b-\", linewidth=2, label=\"Tanh\")\n",
"plt.plot(z, relu(z), \"m-.\", linewidth=2, label=\"ReLU\")\n",
"plt.grid(True)\n",
"plt.legend(loc=\"center right\", fontsize=14)\n",
"plt.title(\"Activation functions\", fontsize=14)\n",
"plt.axis([-5, 5, -1.2, 1.2])\n",
"\n",
"plt.subplot(122)\n",
"plt.plot(z, derivative(np.sign, z), \"r-\", linewidth=1, label=\"Step\")\n",
"plt.plot(0, 0, \"ro\", markersize=5)\n",
"plt.plot(0, 0, \"rx\", markersize=10)\n",
"plt.plot(z, derivative(sigmoid, z), \"g--\", linewidth=2, label=\"Sigmoid\")\n",
"plt.plot(z, derivative(np.tanh, z), \"b-\", linewidth=2, label=\"Tanh\")\n",
"plt.plot(z, derivative(relu, z), \"m-.\", linewidth=2, label=\"ReLU\")\n",
"plt.grid(True)\n",
"#plt.legend(loc=\"center right\", fontsize=14)\n",
"plt.title(\"Derivatives\", fontsize=14)\n",
"plt.axis([-5, 5, -0.2, 1.2])\n",
"\n",
"save_fig(\"activation_functions_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def heaviside(z):\n",
" return (z >= 0).astype(z.dtype)\n",
"\n",
"def mlp_xor(x1, x2, activation=heaviside):\n",
" return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"x1s = np.linspace(-0.2, 1.2, 100)\n",
"x2s = np.linspace(-0.2, 1.2, 100)\n",
"x1, x2 = np.meshgrid(x1s, x2s)\n",
"\n",
"z1 = mlp_xor(x1, x2, activation=heaviside)\n",
"z2 = mlp_xor(x1, x2, activation=sigmoid)\n",
"\n",
"plt.figure(figsize=(10,4))\n",
"\n",
"plt.subplot(121)\n",
"plt.contourf(x1, x2, z1)\n",
"plt.plot([0, 1], [0, 1], \"gs\", markersize=20)\n",
"plt.plot([0, 1], [1, 0], \"y^\", markersize=20)\n",
"plt.title(\"Activation function: heaviside\", fontsize=14)\n",
"plt.grid(True)\n",
"\n",
"plt.subplot(122)\n",
"plt.contourf(x1, x2, z2)\n",
"plt.plot([0, 1], [0, 1], \"gs\", markersize=20)\n",
"plt.plot([0, 1], [1, 0], \"y^\", markersize=20)\n",
"plt.title(\"Activation function: sigmoid\", fontsize=14)\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Building an Image Classifier"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First let's import TensorFlow and Keras."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"from tensorflow import keras"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"tf.__version__"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"keras.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's start by loading the fashion MNIST dataset. Keras has a number of functions to load popular datasets in `keras.datasets`. The dataset is already split for you between a training set and a test set, but it can be useful to split the training set further to have a validation set:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"fashion_mnist = keras.datasets.fashion_mnist\n",
"(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The training set contains 60,000 grayscale images, each 28x28 pixels:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"X_train_full.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Each pixel intensity is represented as a byte (0 to 255):"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"X_train_full.dtype"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's split the full training set into a validation set and a (smaller) training set. We also scale the pixel intensities down to the 0-1 range and convert them to floats, by dividing by 255."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255.\n",
"y_valid, y_train = y_train_full[:5000], y_train_full[5000:]\n",
"X_test = X_test / 255."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can plot an image using Matplotlib's `imshow()` function, with a `'binary'`\n",
" color map:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(X_train[0], cmap=\"binary\")\n",
"plt.axis('off')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The labels are the class IDs (represented as uint8), from 0 to 9:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"y_train"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here are the corresponding class names:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"class_names = [\"T-shirt/top\", \"Trouser\", \"Pullover\", \"Dress\", \"Coat\",\n",
" \"Sandal\", \"Shirt\", \"Sneaker\", \"Bag\", \"Ankle boot\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So the first image in the training set is a coat:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"class_names[y_train[0]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The validation set contains 5,000 images, and the test set contains 10,000 images:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"X_valid.shape"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"X_test.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a look at a sample of the images in the dataset:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"n_rows = 4\n",
"n_cols = 10\n",
"plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))\n",
"for row in range(n_rows):\n",
" for col in range(n_cols):\n",
" index = n_cols * row + col\n",
" plt.subplot(n_rows, n_cols, index + 1)\n",
" plt.imshow(X_train[index], cmap=\"binary\", interpolation=\"nearest\")\n",
" plt.axis('off')\n",
" plt.title(class_names[y_train[index]], fontsize=12)\n",
"plt.subplots_adjust(wspace=0.2, hspace=0.5)\n",
"save_fig('fashion_mnist_plot', tight_layout=False)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential()\n",
"model.add(keras.layers.Flatten(input_shape=[28, 28]))\n",
"model.add(keras.layers.Dense(300, activation=\"relu\"))\n",
"model.add(keras.layers.Dense(100, activation=\"relu\"))\n",
"model.add(keras.layers.Dense(10, activation=\"softmax\"))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"keras.backend.clear_session()\n",
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential([\n",
" keras.layers.Flatten(input_shape=[28, 28]),\n",
" keras.layers.Dense(300, activation=\"relu\"),\n",
" keras.layers.Dense(100, activation=\"relu\"),\n",
" keras.layers.Dense(10, activation=\"softmax\")\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"model.layers"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"keras.utils.plot_model(model, \"my_mnist_model.png\", show_shapes=True)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"hidden1 = model.layers[1]\n",
"hidden1.name"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"model.get_layer(hidden1.name) is hidden1"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"weights, biases = hidden1.get_weights()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"weights"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"weights.shape"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"biases"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"biases.shape"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"sgd\",\n",
" metrics=[\"accuracy\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is equivalent to:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"model.compile(loss=keras.losses.sparse_categorical_crossentropy,\n",
" optimizer=keras.optimizers.SGD(),\n",
" metrics=[keras.metrics.sparse_categorical_accuracy])\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"history = model.fit(X_train, y_train, epochs=30,\n",
" validation_data=(X_valid, y_valid))"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"history.params"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"print(history.epoch)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"history.history.keys()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"pd.DataFrame(history.history).plot(figsize=(8, 5))\n",
"plt.grid(True)\n",
"plt.gca().set_ylim(0, 1)\n",
2019-05-06 07:15:15 +02:00
"save_fig(\"keras_learning_curves_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"model.evaluate(X_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"X_new = X_test[:3]\n",
"y_proba = model.predict(X_new)\n",
"y_proba.round(2)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"y_pred = model.predict_classes(X_new)\n",
"y_pred"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"np.array(class_names)[y_pred]"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"y_new = y_test[:3]\n",
"y_new"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Regression MLP"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's load, split and scale the California housing dataset (the original one, not the modified one as in chapter 2):"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_california_housing\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"housing = fetch_california_housing()\n",
"\n",
"X_train_full, X_test, y_train_full, y_test = train_test_split(housing.data, housing.target, random_state=42)\n",
"X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, random_state=42)\n",
"\n",
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_valid = scaler.transform(X_valid)\n",
"X_test = scaler.transform(X_test)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential([\n",
" keras.layers.Dense(30, activation=\"relu\", input_shape=X_train.shape[1:]),\n",
" keras.layers.Dense(1)\n",
"])\n",
"model.compile(loss=\"mean_squared_error\", optimizer=keras.optimizers.SGD(lr=1e-3))\n",
"history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid))\n",
"mse_test = model.evaluate(X_test, y_test)\n",
"X_new = X_test[:3]\n",
"y_pred = model.predict(X_new)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"plt.plot(pd.DataFrame(history.history))\n",
"plt.grid(True)\n",
"plt.gca().set_ylim(0, 1)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Functional API"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Not all neural network models are simply sequential. Some may have complex topologies. Some may have multiple inputs and/or multiple outputs. For example, a Wide & Deep neural network (see [paper](https://ai.google/research/pubs/pub45413)) connects all or part of the inputs directly to the output layer."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"input_ = keras.layers.Input(shape=X_train.shape[1:])\n",
"hidden1 = keras.layers.Dense(30, activation=\"relu\")(input_)\n",
"hidden2 = keras.layers.Dense(30, activation=\"relu\")(hidden1)\n",
"concat = keras.layers.concatenate([input_, hidden2])\n",
"output = keras.layers.Dense(1)(concat)\n",
"model = keras.models.Model(inputs=[input_], outputs=[output])"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"mean_squared_error\", optimizer=keras.optimizers.SGD(lr=1e-3))\n",
"history = model.fit(X_train, y_train, epochs=20,\n",
" validation_data=(X_valid, y_valid))\n",
"mse_test = model.evaluate(X_test, y_test)\n",
"y_pred = model.predict(X_new)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What if you want to send different subsets of input features through the wide or deep paths? We will send 5 features (features 0 to 4), and 6 through the deep path (features 2 to 7). Note that 3 features will go through both (features 2, 3 and 4)."
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"input_A = keras.layers.Input(shape=[5], name=\"wide_input\")\n",
"input_B = keras.layers.Input(shape=[6], name=\"deep_input\")\n",
"hidden1 = keras.layers.Dense(30, activation=\"relu\")(input_B)\n",
"hidden2 = keras.layers.Dense(30, activation=\"relu\")(hidden1)\n",
"concat = keras.layers.concatenate([input_A, hidden2])\n",
"output = keras.layers.Dense(1, name=\"output\")(concat)\n",
"model = keras.models.Model(inputs=[input_A, input_B], outputs=[output])"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=1e-3))\n",
"\n",
"X_train_A, X_train_B = X_train[:, :5], X_train[:, 2:]\n",
"X_valid_A, X_valid_B = X_valid[:, :5], X_valid[:, 2:]\n",
"X_test_A, X_test_B = X_test[:, :5], X_test[:, 2:]\n",
"X_new_A, X_new_B = X_test_A[:3], X_test_B[:3]\n",
"\n",
"history = model.fit((X_train_A, X_train_B), y_train, epochs=20,\n",
" validation_data=((X_valid_A, X_valid_B), y_valid))\n",
"mse_test = model.evaluate((X_test_A, X_test_B), y_test)\n",
"y_pred = model.predict((X_new_A, X_new_B))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Adding an auxiliary output for regularization:"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"input_A = keras.layers.Input(shape=[5], name=\"wide_input\")\n",
"input_B = keras.layers.Input(shape=[6], name=\"deep_input\")\n",
"hidden1 = keras.layers.Dense(30, activation=\"relu\")(input_B)\n",
"hidden2 = keras.layers.Dense(30, activation=\"relu\")(hidden1)\n",
"concat = keras.layers.concatenate([input_A, hidden2])\n",
"output = keras.layers.Dense(1, name=\"main_output\")(concat)\n",
"aux_output = keras.layers.Dense(1, name=\"aux_output\")(hidden2)\n",
"model = keras.models.Model(inputs=[input_A, input_B],\n",
" outputs=[output, aux_output])"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=[\"mse\", \"mse\"], loss_weights=[0.9, 0.1], optimizer=keras.optimizers.SGD(lr=1e-3))"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"history = model.fit([X_train_A, X_train_B], [y_train, y_train], epochs=20,\n",
" validation_data=([X_valid_A, X_valid_B], [y_valid, y_valid]))"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"total_loss, main_loss, aux_loss = model.evaluate(\n",
" [X_test_A, X_test_B], [y_test, y_test])\n",
"y_pred_main, y_pred_aux = model.predict([X_new_A, X_new_B])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The subclassing API"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"class WideAndDeepModel(keras.models.Model):\n",
" def __init__(self, units=30, activation=\"relu\", **kwargs):\n",
" super().__init__(**kwargs)\n",
" self.hidden1 = keras.layers.Dense(units, activation=activation)\n",
" self.hidden2 = keras.layers.Dense(units, activation=activation)\n",
" self.main_output = keras.layers.Dense(1)\n",
" self.aux_output = keras.layers.Dense(1)\n",
" \n",
" def call(self, inputs):\n",
" input_A, input_B = inputs\n",
" hidden1 = self.hidden1(input_B)\n",
" hidden2 = self.hidden2(hidden1)\n",
" concat = keras.layers.concatenate([input_A, hidden2])\n",
" main_output = self.main_output(concat)\n",
" aux_output = self.aux_output(hidden2)\n",
" return main_output, aux_output\n",
"\n",
"model = WideAndDeepModel(30, activation=\"relu\")"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"mse\", loss_weights=[0.9, 0.1], optimizer=keras.optimizers.SGD(lr=1e-3))\n",
"history = model.fit((X_train_A, X_train_B), (y_train, y_train), epochs=10,\n",
" validation_data=((X_valid_A, X_valid_B), (y_valid, y_valid)))\n",
"total_loss, main_loss, aux_loss = model.evaluate((X_test_A, X_test_B), (y_test, y_test))\n",
"y_pred_main, y_pred_aux = model.predict((X_new_A, X_new_B))"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"model = WideAndDeepModel(30, activation=\"relu\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Saving and Restoring"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential([\n",
" keras.layers.Dense(30, activation=\"relu\", input_shape=[8]),\n",
" keras.layers.Dense(30, activation=\"relu\"),\n",
" keras.layers.Dense(1)\n",
"]) "
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=1e-3))\n",
"history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))\n",
"mse_test = model.evaluate(X_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"model.save(\"my_keras_model.h5\")"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.load_model(\"my_keras_model.h5\")"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"model.predict(X_new)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"model.save_weights(\"my_keras_weights.ckpt\")"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"model.load_weights(\"my_keras_weights.ckpt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Callbacks during Training"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"keras.backend.clear_session()\n",
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential([\n",
" keras.layers.Dense(30, activation=\"relu\", input_shape=[8]),\n",
" keras.layers.Dense(30, activation=\"relu\"),\n",
" keras.layers.Dense(1)\n",
"]) "
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=1e-3))\n",
"checkpoint_cb = keras.callbacks.ModelCheckpoint(\"my_keras_model.h5\", save_best_only=True)\n",
"history = model.fit(X_train, y_train, epochs=10,\n",
" validation_data=(X_valid, y_valid),\n",
" callbacks=[checkpoint_cb])\n",
"model = keras.models.load_model(\"my_keras_model.h5\") # rollback to best model\n",
"mse_test = model.evaluate(X_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=1e-3))\n",
"early_stopping_cb = keras.callbacks.EarlyStopping(patience=10,\n",
" restore_best_weights=True)\n",
"history = model.fit(X_train, y_train, epochs=100,\n",
" validation_data=(X_valid, y_valid),\n",
" callbacks=[checkpoint_cb, early_stopping_cb])\n",
"mse_test = model.evaluate(X_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"class PrintValTrainRatioCallback(keras.callbacks.Callback):\n",
" def on_epoch_end(self, epoch, logs):\n",
" print(\"\\nval/train: {:.2f}\".format(logs[\"val_loss\"] / logs[\"loss\"]))"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"val_train_ratio_cb = PrintValTrainRatioCallback()\n",
"history = model.fit(X_train, y_train, epochs=1,\n",
" validation_data=(X_valid, y_valid),\n",
" callbacks=[val_train_ratio_cb])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TensorBoard"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"root_logdir = os.path.join(os.curdir, \"my_logs\")"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"def get_run_logdir():\n",
" import time\n",
" run_id = time.strftime(\"run_%Y_%m_%d-%H_%M_%S\")\n",
" return os.path.join(root_logdir, run_id)\n",
"\n",
"run_logdir = get_run_logdir()\n",
"run_logdir"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
"keras.backend.clear_session()\n",
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential([\n",
" keras.layers.Dense(30, activation=\"relu\", input_shape=[8]),\n",
" keras.layers.Dense(30, activation=\"relu\"),\n",
" keras.layers.Dense(1)\n",
"]) \n",
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=1e-3))"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
"tensorboard_cb = keras.callbacks.TensorBoard(run_logdir)\n",
"history = model.fit(X_train, y_train, epochs=30,\n",
" validation_data=(X_valid, y_valid),\n",
" callbacks=[checkpoint_cb, tensorboard_cb])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To start the TensorBoard server, one option is to open a terminal, if needed activate the virtualenv where you installed TensorBoard, go to this notebook's directory, then type:\n",
"\n",
"```bash\n",
"$ tensorboard --logdir=./my_logs --port=6006\n",
"```\n",
"\n",
"You can then open your web browser to [localhost:6006](http://localhost:6006) and use TensorBoard. Once you are done, press Ctrl-C in the terminal window, this will shutdown the TensorBoard server.\n",
"\n",
"Alternatively, you can load TensorBoard's Jupyter extension and run it like this:"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
"%load_ext tensorboard\n",
"%tensorboard --logdir=./my_logs --port=6006"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
"run_logdir2 = get_run_logdir()\n",
"run_logdir2"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"keras.backend.clear_session()\n",
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
"model = keras.models.Sequential([\n",
" keras.layers.Dense(30, activation=\"relu\", input_shape=[8]),\n",
" keras.layers.Dense(30, activation=\"relu\"),\n",
" keras.layers.Dense(1)\n",
"]) \n",
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=0.05))"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"tensorboard_cb = keras.callbacks.TensorBoard(run_logdir2)\n",
"history = model.fit(X_train, y_train, epochs=30,\n",
" validation_data=(X_valid, y_valid),\n",
" callbacks=[checkpoint_cb, tensorboard_cb])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice how TensorBoard now sees two runs, and you can compare the learning curves."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check out the other available logging options:"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
"help(keras.callbacks.TensorBoard.__init__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Hyperparameter Tuning"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [],
"source": [
"keras.backend.clear_session()\n",
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [],
"source": [
"def build_model(n_hidden=1, n_neurons=30, learning_rate=3e-3, input_shape=[8]):\n",
" model = keras.models.Sequential()\n",
" model.add(keras.layers.InputLayer(input_shape=input_shape))\n",
" for layer in range(n_hidden):\n",
" model.add(keras.layers.Dense(n_neurons, activation=\"relu\"))\n",
" model.add(keras.layers.Dense(1))\n",
" optimizer = keras.optimizers.SGD(lr=learning_rate)\n",
" model.compile(loss=\"mse\", optimizer=optimizer)\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"keras_reg = keras.wrappers.scikit_learn.KerasRegressor(build_model)"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"keras_reg.fit(X_train, y_train, epochs=100,\n",
" validation_data=(X_valid, y_valid),\n",
" callbacks=[keras.callbacks.EarlyStopping(patience=10)])"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [],
"source": [
"mse_test = keras_reg.score(X_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [],
"source": [
"y_pred = keras_reg.predict(X_new)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)\n",
"tf.random.set_seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [],
"source": [
"from scipy.stats import reciprocal\n",
"from sklearn.model_selection import RandomizedSearchCV\n",
"\n",
"param_distribs = {\n",
" \"n_hidden\": [0, 1, 2, 3],\n",
" \"n_neurons\": np.arange(1, 100),\n",
" \"learning_rate\": reciprocal(3e-4, 3e-2),\n",
"}\n",
"\n",
"rnd_search_cv = RandomizedSearchCV(keras_reg, param_distribs, n_iter=10, cv=3, verbose=2)\n",
"rnd_search_cv.fit(X_train, y_train, epochs=100,\n",
" validation_data=(X_valid, y_valid),\n",
" callbacks=[keras.callbacks.EarlyStopping(patience=10)])"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
"rnd_search_cv.best_params_"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [],
"source": [
"rnd_search_cv.best_score_"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
"rnd_search_cv.best_estimator_"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
"rnd_search_cv.score(X_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [],
"source": [
"model = rnd_search_cv.best_estimator_.model\n",
"model"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [],
"source": [
"model.evaluate(X_test, y_test)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. to 9."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"See appendix A."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 10."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"TODO"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"nav_menu": {
"height": "264px",
"width": "369px"
},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}