Remove unneeded comments, sync notebook with book code

main
Aurélien Geron 2021-11-25 15:09:48 +13:00
parent 8e97aab84b
commit 01d5df8e72
1 changed files with 54 additions and 116 deletions

View File

@ -316,13 +316,6 @@
"plt.show()" "plt.show()"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**This is the first code example in chapter 5:**"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 8,
@ -472,13 +465,6 @@
"plt.show()" "plt.show()"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Here is second code example in the chapter:**"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 13,
@ -538,13 +524,6 @@
"## Polynomial Kernel" "## Polynomial Kernel"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Next code example:**"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 15,
@ -553,10 +532,8 @@
"source": [ "source": [
"from sklearn.svm import SVC\n", "from sklearn.svm import SVC\n",
"\n", "\n",
"poly_kernel_svm_clf = make_pipeline(\n", "poly_kernel_svm_clf = make_pipeline(StandardScaler(),\n",
" StandardScaler(),\n", " SVC(kernel=\"poly\", degree=3, coef0=1, C=5))\n",
" SVC(kernel=\"poly\", degree=3, coef0=1, C=5)\n",
")\n",
"poly_kernel_svm_clf.fit(X, y)" "poly_kernel_svm_clf.fit(X, y)"
] ]
}, },
@ -677,23 +654,14 @@
"## Gaussian RBF Kernel" "## Gaussian RBF Kernel"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Next code example:**"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 18,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"rbf_kernel_svm_clf = make_pipeline(\n", "rbf_kernel_svm_clf = make_pipeline(StandardScaler(),\n",
" StandardScaler(),\n", " SVC(kernel=\"rbf\", gamma=5, C=0.001))\n",
" SVC(kernel=\"rbf\", gamma=5, C=0.001)\n",
")\n",
"rbf_kernel_svm_clf.fit(X, y)" "rbf_kernel_svm_clf.fit(X, y)"
] ]
}, },
@ -751,29 +719,14 @@
"execution_count": 20, "execution_count": 20,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [
"# not in the book this code generates a simple linear dataset\n",
"np.random.seed(42)\n",
"m = 50\n",
"X = 2 * np.random.rand(m, 1)\n",
"y = (4 + 3 * X + np.random.randn(m, 1)).ravel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Next code example:**"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [ "source": [
"from sklearn.svm import LinearSVR\n", "from sklearn.svm import LinearSVR\n",
"\n", "\n",
"# not in the book these 3 lines generate a simple linear dataset\n",
"np.random.seed(42)\n",
"X = 2 * np.random.rand(50, 1)\n",
"y = 4 + 3 * X[:, 0] + np.random.randn(50)\n",
"\n",
"svm_reg = make_pipeline(StandardScaler(),\n", "svm_reg = make_pipeline(StandardScaler(),\n",
" LinearSVR(epsilon=0.5, random_state=42))\n", " LinearSVR(epsilon=0.5, random_state=42))\n",
"svm_reg.fit(X, y)" "svm_reg.fit(X, y)"
@ -781,7 +734,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -839,32 +792,17 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 23, "execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# not in the book this code generates a simple quadratic dataset\n",
"np.random.seed(42)\n",
"m = 50\n",
"X = 2 * np.random.rand(m, 1) - 1\n",
"y = (0.2 + 0.1 * X + 0.5 * X ** 2 + np.random.randn(m, 1) / 10).ravel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Next code example:**"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.svm import SVR\n", "from sklearn.svm import SVR\n",
"\n", "\n",
"# not in the book these 3 lines generate a simple quadratic dataset\n",
"np.random.seed(42)\n",
"X = 2 * np.random.rand(50, 1) - 1\n",
"y = 0.2 + 0.1 * X[:, 0] + 0.5 * X[:, 0] ** 2 + np.random.randn(50) / 10\n",
"\n",
"svm_poly_reg = make_pipeline(StandardScaler(),\n", "svm_poly_reg = make_pipeline(StandardScaler(),\n",
" SVR(kernel=\"poly\", degree=2, C=0.01, epsilon=0.1))\n", " SVR(kernel=\"poly\", degree=2, C=0.01, epsilon=0.1))\n",
"svm_poly_reg.fit(X, y)" "svm_poly_reg.fit(X, y)"
@ -872,7 +810,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 25, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -913,7 +851,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 26, "execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -962,7 +900,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 27, "execution_count": 25,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1010,7 +948,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 28, "execution_count": 26,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1020,7 +958,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 29, "execution_count": 27,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1081,7 +1019,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 28,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1094,7 +1032,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 31, "execution_count": 29,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1108,7 +1046,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 32, "execution_count": 30,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1117,7 +1055,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 33, "execution_count": 31,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1128,7 +1066,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 34, "execution_count": 32,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1159,7 +1097,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 35, "execution_count": 33,
"metadata": { "metadata": {
"scrolled": true "scrolled": true
}, },
@ -1237,7 +1175,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 36, "execution_count": 34,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1264,7 +1202,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 37, "execution_count": 35,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1292,7 +1230,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 38, "execution_count": 36,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1351,7 +1289,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 39, "execution_count": 37,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1362,7 +1300,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 40, "execution_count": 38,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1371,7 +1309,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 41, "execution_count": 39,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1383,7 +1321,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 42, "execution_count": 40,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1392,7 +1330,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 43, "execution_count": 41,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1408,7 +1346,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 44, "execution_count": 42,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1425,7 +1363,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 45, "execution_count": 43,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1444,7 +1382,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 46, "execution_count": 44,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1464,7 +1402,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 47, "execution_count": 45,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1482,7 +1420,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 48, "execution_count": 46,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1507,7 +1445,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 49, "execution_count": 47,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1524,7 +1462,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 50, "execution_count": 48,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1543,7 +1481,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 51, "execution_count": 49,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1559,7 +1497,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 52, "execution_count": 50,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1596,7 +1534,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 53, "execution_count": 51,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1616,7 +1554,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 54, "execution_count": 52,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1642,7 +1580,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 55, "execution_count": 53,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1661,7 +1599,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 56, "execution_count": 54,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1679,7 +1617,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 57, "execution_count": 55,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1699,7 +1637,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 58, "execution_count": 56,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1715,7 +1653,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 59, "execution_count": 57,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1736,7 +1674,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 60, "execution_count": 58,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1745,7 +1683,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 61, "execution_count": 59,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1762,7 +1700,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 62, "execution_count": 60,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [