From 134a10e4d27b68c146331373b70c78fc52ad1890 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Aur=C3=A9lien=20Geron?= Date: Fri, 15 Sep 2017 18:08:43 +0200 Subject: [PATCH] Scikit-Learn 0.19 expects lists in Pipelines, not tuples --- 04_training_linear_models.ipynb | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/04_training_linear_models.ipynb b/04_training_linear_models.ipynb index 45701e7..8683246 100644 --- a/04_training_linear_models.ipynb +++ b/04_training_linear_models.ipynb @@ -709,11 +709,11 @@ " polybig_features = PolynomialFeatures(degree=degree, include_bias=False)\n", " std_scaler = StandardScaler()\n", " lin_reg = LinearRegression()\n", - " polynomial_regression = Pipeline((\n", + " polynomial_regression = Pipeline([\n", " (\"poly_features\", polybig_features),\n", " (\"std_scaler\", std_scaler),\n", " (\"lin_reg\", lin_reg),\n", - " ))\n", + " ])\n", " polynomial_regression.fit(X, y)\n", " y_newbig = polynomial_regression.predict(X_new)\n", " plt.plot(X_new, y_newbig, style, label=str(degree), linewidth=width)\n", @@ -786,10 +786,10 @@ "source": [ "from sklearn.pipeline import Pipeline\n", "\n", - "polynomial_regression = Pipeline((\n", + "polynomial_regression = Pipeline([\n", " (\"poly_features\", PolynomialFeatures(degree=10, include_bias=False)),\n", " (\"lin_reg\", LinearRegression()),\n", - " ))\n", + " ])\n", "\n", "plot_learning_curves(polynomial_regression, X, y)\n", "plt.axis([0, 80, 0, 3]) # not shown\n", @@ -829,11 +829,11 @@ " for alpha, style in zip(alphas, (\"b-\", \"g--\", \"r:\")):\n", " model = model_class(alpha, **model_kargs) if alpha > 0 else LinearRegression()\n", " if polynomial:\n", - " model = Pipeline((\n", + " model = Pipeline([\n", " (\"poly_features\", PolynomialFeatures(degree=10, include_bias=False)),\n", " (\"std_scaler\", StandardScaler()),\n", " (\"regul_reg\", model),\n", - " ))\n", + " ])\n", " model.fit(X, y)\n", " y_new_regul = model.predict(X_new)\n", " lw = 2 if alpha > 0 else 1\n", @@ -973,10 +973,10 @@ "\n", "X_train, X_val, y_train, y_val = train_test_split(X[:50], y[:50].ravel(), test_size=0.5, random_state=10)\n", "\n", - "poly_scaler = Pipeline((\n", + "poly_scaler = Pipeline([\n", " (\"poly_features\", PolynomialFeatures(degree=90, include_bias=False)),\n", " (\"std_scaler\", StandardScaler()),\n", - " ))\n", + " ])\n", "\n", "X_train_poly_scaled = poly_scaler.fit_transform(X_train)\n", "X_val_poly_scaled = poly_scaler.transform(X_val)\n",