Fix some issues with TF 2.2 breaking changes
parent
6adb7253b5
commit
1a19694d57
|
@ -1588,13 +1588,20 @@
|
||||||
"model.fit(X_train_scaled.astype(np.float32), y_train.astype(np.float32), epochs=2)"
|
"model.fit(X_train_scaled.astype(np.float32), y_train.astype(np.float32), epochs=2)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Warning**: In TF 2.2, tf.keras adds an extra first metric in `model.metrics` at position 0 (see [TF issue #38150](https://github.com/tensorflow/tensorflow/issues/38150)). This forces us to use `model.metrics[-1]` rather than `model.metrics[0]` to access the `HuberMetric`."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 124,
|
"execution_count": 124,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"model.metrics[0].threshold"
|
"model.metrics[-1].threshold"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1713,6 +1720,13 @@
|
||||||
"model.fit(X_train_scaled.astype(np.float32), y_train.astype(np.float32), epochs=2)"
|
"model.fit(X_train_scaled.astype(np.float32), y_train.astype(np.float32), epochs=2)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Warning**: In TF 2.2, tf.keras adds an extra first metric in `model.metrics` at position 0 (see [TF issue #38150](https://github.com/tensorflow/tensorflow/issues/38150)). This forces us to use `model.metrics[-1]` rather than `model.metrics[0]` to access the `HuberMetric`."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 134,
|
"execution_count": 134,
|
||||||
|
@ -1721,7 +1735,7 @@
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"model.metrics[0].threshold"
|
"model.metrics[-1].threshold"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1976,8 +1990,6 @@
|
||||||
"class ResidualBlock(keras.layers.Layer):\n",
|
"class ResidualBlock(keras.layers.Layer):\n",
|
||||||
" def __init__(self, n_layers, n_neurons, **kwargs):\n",
|
" def __init__(self, n_layers, n_neurons, **kwargs):\n",
|
||||||
" super().__init__(**kwargs)\n",
|
" super().__init__(**kwargs)\n",
|
||||||
" self.n_layers = n_layers # not shown in the book\n",
|
|
||||||
" self.n_neurons = n_neurons # not shown\n",
|
|
||||||
" self.hidden = [keras.layers.Dense(n_neurons, activation=\"elu\",\n",
|
" self.hidden = [keras.layers.Dense(n_neurons, activation=\"elu\",\n",
|
||||||
" kernel_initializer=\"he_normal\")\n",
|
" kernel_initializer=\"he_normal\")\n",
|
||||||
" for _ in range(n_layers)]\n",
|
" for _ in range(n_layers)]\n",
|
||||||
|
@ -1986,12 +1998,7 @@
|
||||||
" Z = inputs\n",
|
" Z = inputs\n",
|
||||||
" for layer in self.hidden:\n",
|
" for layer in self.hidden:\n",
|
||||||
" Z = layer(Z)\n",
|
" Z = layer(Z)\n",
|
||||||
" return inputs + Z\n",
|
" return inputs + Z"
|
||||||
" \n",
|
|
||||||
" def get_config(self): # not shown\n",
|
|
||||||
" base_config = super().get_config() # not shown\n",
|
|
||||||
" return {**base_config, # not shown\n",
|
|
||||||
" \"n_layers\": self.n_layers, \"n_neurons\": self.n_neurons} # not shown"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2003,7 +2010,6 @@
|
||||||
"class ResidualRegressor(keras.models.Model):\n",
|
"class ResidualRegressor(keras.models.Model):\n",
|
||||||
" def __init__(self, output_dim, **kwargs):\n",
|
" def __init__(self, output_dim, **kwargs):\n",
|
||||||
" super().__init__(**kwargs)\n",
|
" super().__init__(**kwargs)\n",
|
||||||
" self.output_dim = output_dim # not shown in the book\n",
|
|
||||||
" self.hidden1 = keras.layers.Dense(30, activation=\"elu\",\n",
|
" self.hidden1 = keras.layers.Dense(30, activation=\"elu\",\n",
|
||||||
" kernel_initializer=\"he_normal\")\n",
|
" kernel_initializer=\"he_normal\")\n",
|
||||||
" self.block1 = ResidualBlock(2, 30)\n",
|
" self.block1 = ResidualBlock(2, 30)\n",
|
||||||
|
@ -2015,12 +2021,7 @@
|
||||||
" for _ in range(1 + 3):\n",
|
" for _ in range(1 + 3):\n",
|
||||||
" Z = self.block1(Z)\n",
|
" Z = self.block1(Z)\n",
|
||||||
" Z = self.block2(Z)\n",
|
" Z = self.block2(Z)\n",
|
||||||
" return self.out(Z)\n",
|
" return self.out(Z)"
|
||||||
"\n",
|
|
||||||
" def get_config(self): # not shown\n",
|
|
||||||
" base_config = super().get_config() # not shown\n",
|
|
||||||
" return {**base_config, # not shown\n",
|
|
||||||
" \"output_dim\": self.output_dim} # not shown"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
Loading…
Reference in New Issue