Update requirements.txt and send Anaconda love

main
Aurélien Geron 2019-12-16 23:18:29 +08:00
parent b6be3eca67
commit 1f542d2757
1 changed files with 56 additions and 66 deletions

View File

@ -1,104 +1,94 @@
# First make sure to update pip: # TensorFlow is much easier to install using Anaconda, especially
# $ sudo python3 -m pip install --upgrade pip # on Windows or when using a GPU. Please see the installation
# # instructions in INSTALL.md
# Then you probably want to work in a virtualenv (optional):
# $ sudo python3 -m pip install --upgrade virtualenv
# Or if you prefer you can install virtualenv using your favorite packaging
# system. E.g., in Ubuntu:
# $ sudo apt-get update && sudo apt-get install virtualenv
# Then:
# $ cd $my_work_dir
# $ virtualenv my_env
# $ . my_env/bin/activate
#
# Next, optionally uncomment the OpenAI gym lines (see below).
# If you do, make sure to install the dependencies first.
#
# Then install these requirements:
# $ python3 -m pip install --upgrade -r requirements.txt
#
# Finally, start jupyter:
# $ jupyter notebook
#
##### Core scientific packages ##### Core scientific packages
jupyter==1.0.0 jupyter==1.0.0
matplotlib==3.1.1 matplotlib==3.1.2
numpy==1.17.2 numpy==1.17.3
pandas==0.25.1 pandas==0.25.3
scipy==1.3.1 scipy==1.3.1
##### Machine Learning packages ##### Machine Learning packages
scikit-learn==0.20.4 scikit-learn==0.22
# Optional: the XGBoost library is only used in the ensemble learning chapter. # Optional: the XGBoost library is only used in chapter 7
xgboost==0.90 xgboost==0.90
##### TensorFlow-related packages ##### TensorFlow-related packages
# Replace tensorflow with tensorflow-gpu if you want GPU support. If so, # If you have a TF-compatible GPU and you want to enable GPU support, then
# you need a GPU card with CUDA Compute Capability 3.5 or higher support, and # replace tensorflow with tensorflow-gpu, and replace tensorflow-serving-api
# with tensorflow-serving-api-gpu.
# Your GPU must have CUDA Compute Capability 3.5 or higher support, and
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed # you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions. # installation instructions.
tensorflow==2.0.0 tensorflow==2.0.0
#tensorflow-gpu==2.0.0 #tensorflow-gpu==2.0.0
tensorboard==2.0.0
tensorflow-datasets==1.3.0
tensorflow-hub==0.6.0
# Optional: only used in chapter 13.
tfx==0.15.0rc0
# Optional: only used in chapter 16.
#tensorflow-addons==0.6.0
# Optional: the TF Agents library is only needed in chapter 18
tf-agents-nightly
# Optional: the TF Serving API library is just needed for chapter 19. # Optional: the TF Serving API library is just needed for chapter 19.
tensorflow-serving-api==2.0.0 tensorflow-serving-api==2.0.0
#tensorflow-serving-api-gpu==2.0.0
tensorboard==2.0.0
tensorflow-datasets==1.3.0
tensorflow-hub==0.6.0
tensorflow-probability==0.7
# Optional: only used in chapter 13.
# NOT AVAILABLE ON WINDOWS
tfx==0.15.0
# Optional: only used in chapter 16.
# NOT AVAILABLE ON WINDOWS
tensorflow-addons==0.6.0
##### Reinforcement Learning library (chapter 18)
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[atari]==0.15.4
# On Windows, install atari_py using:
# pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py
tf-agents==0.3.0rc0
##### Image manipulation ##### Image manipulation
imageio==2.6.0 imageio==2.6.1
Pillow==6.2.0 Pillow==6.2.1
scikit-image==0.15.0 scikit-image==0.16.2
graphviz==0.10.1 graphviz
pydot==1.4.1
opencv-python==4.1.2.30
pyglet==1.3.2
##### Reinforcement Learning library #pyvirtualdisplay # needed in chapter 16, if on a headless server
# (i.e., without screen, e.g., Colab or VM)
# OpenAI gym is only needed in chapter 18.
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[atari,box2d,classic_control]==0.15.3
##### Additional utilities ##### Additional utilities
# Joblib is a set of tools to provide lightweight pipelining # Efficient jobs (caching, parallelism, persistence)
joblib==0.13.2 joblib==0.14.0
# Easy http requests
requests==2.22.0
# Nice utility to diff Jupyter Notebooks.
nbdime==1.1.0
# May be useful with Pandas for complex "where" clauses (e.g., Pandas # May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial). # tutorial).
numexpr==2.7.0 numexpr==2.7.0
# Optional: these libraries can be useful in chapter 3, exercise 4. # Optional: these libraries can be useful in the classification chapter,
# exercise 4.
nltk==3.4.5 nltk==3.4.5
urlextract==0.13.0 urlextract==0.13.0
# Needed in chapter 19.
requests==2.22.0
# Optional: nice utility to diff Jupyter Notebooks.
#nbdime==1.1.0
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support # Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
tqdm==4.36.1 tqdm==4.40.0
ipywidgets==7.5.1 ipywidgets==7.5.1