Improve formatting
parent
dc2b38fc83
commit
21794905c6
|
@ -533,23 +533,23 @@
|
|||
"source": [
|
||||
"Dual numbers have their own arithmetic rules, which are generally quite natural. For example:\n",
|
||||
"\n",
|
||||
"Addition:\n",
|
||||
"**Addition**\n",
|
||||
"\n",
|
||||
"$(a_1 + b_1\\epsilon) + (a_2 + b_2\\epsilon) = (a_1 + a_2) + (b_1 + b_2)\\epsilon$\n",
|
||||
"\n",
|
||||
"Subtraction:\n",
|
||||
"**Subtraction**\n",
|
||||
"\n",
|
||||
"$(a_1 + b_1\\epsilon) - (a_2 + b_2\\epsilon) = (a_1 - a_2) + (b_1 - b_2)\\epsilon$\n",
|
||||
"\n",
|
||||
"Multiplication:\n",
|
||||
"**Multiplication**\n",
|
||||
"\n",
|
||||
"$(a_1 + b_1\\epsilon) * (a_2 + b_2\\epsilon) = (a_1 a_2) + (a_1 b_2 + a_2 b_1)\\epsilon + b_1 b_2\\epsilon^2 = (a_1 a_2) + (a_1b_2 + a_2b_1)\\epsilon$\n",
|
||||
"$(a_1 + b_1\\epsilon) \\times (a_2 + b_2\\epsilon) = (a_1 a_2) + (a_1 b_2 + a_2 b_1)\\epsilon + b_1 b_2\\epsilon^2 = (a_1 a_2) + (a_1b_2 + a_2b_1)\\epsilon$\n",
|
||||
"\n",
|
||||
"Division:\n",
|
||||
"**Division**\n",
|
||||
"\n",
|
||||
"$\\dfrac{a_1 + b_1\\epsilon}{a_2 + b_2\\epsilon} = \\dfrac{a_1 + b_1\\epsilon}{a_2 + b_2\\epsilon} \\cdot \\dfrac{a_2 - b_2\\epsilon}{a_2 - b_2\\epsilon} = \\dfrac{a_1 a_2 + (b_1 a_2 - a_1 b_2)\\epsilon - b_1 b_2\\epsilon^2}{{a_2}^2 + (a_2 b_2 - a_2 b_2)\\epsilon - {b_2}^2\\epsilon} = \\dfrac{a_1}{a_2} + \\dfrac{a_1 b_2 - b_1 a_2}{{a_2}^2}\\epsilon$\n",
|
||||
"\n",
|
||||
"Power:\n",
|
||||
"**Power**\n",
|
||||
"\n",
|
||||
"$(a + b\\epsilon)^n = a^n + (n a^{n-1}b)\\epsilon$\n",
|
||||
"\n",
|
||||
|
@ -560,7 +560,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's create a class to represent dual numbers, and implement a few operations (addition and multiplication). You try adding some more if you want."
|
||||
"Let's create a class to represent dual numbers, and implement a few operations (addition and multiplication). You can try adding some more if you want."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -618,7 +618,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"$(3 + 4ε)\\times(5 + 7ε) = 3 \\times 5 + 3 \\times 7ε + 4ε \\times 5 + 4ε \\times 7ε = 15 + 21ε + 20ε + 28ε^2 = 15 + 41ε + 28 \\times 0 = 15 + 41ε$"
|
||||
"$(3 + 4ε)\\times(5 + 7ε)$ = $3 \\times 5 + 3 \\times 7ε + 4ε \\times 5 + 4ε \\times 7ε$ = $15 + 21ε + 20ε + 28ε^2$ = $15 + 41ε + 28 \\times 0$ = $15 + 41ε$"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue