Update to TF 2.0.0 (from nightly) and update other libraries

main
Aurélien Geron 2019-10-13 00:19:05 +09:30
parent d8971f1767
commit 23b6366c39
1 changed files with 29 additions and 33 deletions

View File

@ -1,8 +1,8 @@
# First make sure to update pip:
# $ sudo pip install --upgrade pip
# $ sudo python3 -m pip install --upgrade pip
#
# Then you probably want to work in a virtualenv (optional):
# $ sudo pip install --upgrade virtualenv
# $ sudo python3 -m pip install --upgrade virtualenv
# Or if you prefer you can install virtualenv using your favorite packaging
# system. E.g., in Ubuntu:
# $ sudo apt-get update && sudo apt-get install virtualenv
@ -13,11 +13,9 @@
#
# Next, optionally uncomment the OpenAI gym lines (see below).
# If you do, make sure to install the dependencies first.
# If you are interested in xgboost for high performance Gradient Boosting, you
# should uncomment the xgboost line (used in the ensemble learning notebook).
#
# Then install these requirements:
# $ pip install --upgrade -r requirements.txt
# $ python3 -m pip install --upgrade -r requirements.txt
#
# Finally, start jupyter:
# $ jupyter notebook
@ -26,17 +24,17 @@
##### Core scientific packages
jupyter==1.0.0
matplotlib==3.0.3
numpy==1.16.2
pandas==0.24.1
scipy==1.1.0
matplotlib==3.1.1
numpy==1.17.2
pandas==0.25.1
scipy==1.3.1
##### Machine Learning packages
scikit-learn==0.20.3
scikit-learn==0.20.4
# Optional: the XGBoost library is only used in the ensemble learning chapter.
xgboost==0.82
xgboost==0.90
##### TensorFlow-related packages
@ -46,36 +44,35 @@ xgboost==0.82
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions.
tf-nightly-2.0-preview
#tf-nightly-gpu-2.0-preview
tensorflow==2.0.0
#tensorflow-gpu==2.0.0
#tensorboard
tb-nightly
tensorboard==2.0.0
#tensorflow-datasets
tfds-nightly
tensorflow-datasets==1.2.0
tensorflow-hub
tensorflow-hub==0.6.0
# Optional: only used in chapter 13.
#tensorflow-transform==0.13.0
tfx==0.14.0
# Optional: only used in chapter 16.
# At the present (April 2019) the TF Addons library is only available on Linux
# So uncomment this line if you are using Linux.
#tensorflow-addons
#tensorflow-addons==0.6.0
# Optional: the TF Agents library is only needed in chapter 18
tf-agents-nightly
# Optional: the TF Serving API library is just needed for chapter 19.
tensorflow-serving-api
tensorflow-serving-api==1.14.0
##### Image manipulation
imageio==2.5.0
Pillow==5.4.1
scikit-image==0.14.2
imageio==2.6.0
Pillow==6.2.0
scikit-image==0.15.0
graphviz==0.10.1
pygraphviz==1.3
pydot==1.4.1
##### Reinforcement Learning library
@ -83,7 +80,7 @@ scikit-image==0.14.2
# OpenAI gym is only needed in chapter 18.
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[atari]==0.10.9
gym[atari]==0.15.3
##### Additional utilities
@ -93,19 +90,18 @@ joblib==0.13.2
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial).
numexpr==2.6.9
numexpr==2.7.0
# Optional: these libraries can be useful in chapter 3, exercise 4.
nltk==3.4.5
urlextract==0.9
urlextract==0.13.0
# Needed in chapter 19.
requests==2.22.0
# Optional: nice utility to diff Jupyter Notebooks.
#nbdime==1.0.5
#nbdime==1.1.0
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
tqdm==4.31.1
ipywidgets==7.4.2
tqdm==4.36.1
ipywidgets==7.5.1