Use default splitter="best" instead of splitter="random", fixes #340
parent
e2edfb274b
commit
33f9ff10b4
|
@ -242,7 +242,7 @@
|
||||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||||
"\n",
|
"\n",
|
||||||
"bag_clf = BaggingClassifier(\n",
|
"bag_clf = BaggingClassifier(\n",
|
||||||
" DecisionTreeClassifier(random_state=42), n_estimators=500,\n",
|
" DecisionTreeClassifier(), n_estimators=500,\n",
|
||||||
" max_samples=100, bootstrap=True, random_state=42)\n",
|
" max_samples=100, bootstrap=True, random_state=42)\n",
|
||||||
"bag_clf.fit(X_train, y_train)\n",
|
"bag_clf.fit(X_train, y_train)\n",
|
||||||
"y_pred = bag_clf.predict(X_test)"
|
"y_pred = bag_clf.predict(X_test)"
|
||||||
|
@ -327,9 +327,11 @@
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"from math import ceil, sqrt\n",
|
||||||
|
"\n",
|
||||||
"bag_clf = BaggingClassifier(\n",
|
"bag_clf = BaggingClassifier(\n",
|
||||||
" DecisionTreeClassifier(splitter=\"random\", max_leaf_nodes=16, random_state=42),\n",
|
" DecisionTreeClassifier(max_leaf_nodes=16),\n",
|
||||||
" n_estimators=500, max_samples=1.0, bootstrap=True, random_state=42)"
|
" n_estimators=500, max_features=ceil(sqrt(X_train.shape[1])), random_state=42)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -362,7 +364,7 @@
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"np.sum(y_pred == y_pred_rf) / len(y_pred) # almost identical predictions"
|
"np.sum(y_pred == y_pred_rf) / len(y_pred) # very similar predictions"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -419,7 +421,7 @@
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"bag_clf = BaggingClassifier(\n",
|
"bag_clf = BaggingClassifier(\n",
|
||||||
" DecisionTreeClassifier(random_state=42), n_estimators=500,\n",
|
" DecisionTreeClassifier(), n_estimators=500,\n",
|
||||||
" bootstrap=True, oob_score=True, random_state=40)\n",
|
" bootstrap=True, oob_score=True, random_state=40)\n",
|
||||||
"bag_clf.fit(X_train, y_train)\n",
|
"bag_clf.fit(X_train, y_train)\n",
|
||||||
"bag_clf.oob_score_"
|
"bag_clf.oob_score_"
|
||||||
|
|
Loading…
Reference in New Issue