Remove redundant comment
parent
146e6fc062
commit
3552690321
|
@ -201,8 +201,8 @@
|
|||
"plt.rc('font', size=14)\n",
|
||||
"plt.rc('axes', labelsize=14, titlesize=14)\n",
|
||||
"plt.rc('legend', fontsize=14)\n",
|
||||
"plt.rc('xtick',labelsize=10)\n",
|
||||
"plt.rc('ytick',labelsize=10)\n",
|
||||
"plt.rc('xtick', labelsize=10)\n",
|
||||
"plt.rc('ytick', labelsize=10)\n",
|
||||
"\n",
|
||||
"housing.hist(bins=50, figsize=(12, 8))\n",
|
||||
"save_fig(\"attribute_histogram_plots\") # not in the book\n",
|
||||
|
@ -1196,7 +1196,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"# not in the book – this code generates Figure 2–17\n",
|
||||
"fig, axs = plt.subplots(1, 2, figsize=(8,3), sharey=True)\n",
|
||||
"fig, axs = plt.subplots(1, 2, figsize=(8, 3), sharey=True)\n",
|
||||
"housing[\"population\"].hist(ax=axs[0], bins=50)\n",
|
||||
"housing[\"population\"].apply(np.log).hist(ax=axs[1], bins=50)\n",
|
||||
"axs[0].set_xlabel(\"Population\")\n",
|
||||
|
@ -1270,7 +1270,7 @@
|
|||
"ax2 = ax1.twinx() # create a twin axis that shares the same x-axis\n",
|
||||
"color = \"blue\"\n",
|
||||
"ax2.plot(ages, rbf1, color=color, label=\"gamma = 0.10\")\n",
|
||||
"ax2.plot(ages, rbf2, color=color, label=\"gamma = 0.03\", linestyle=\"--\",)\n",
|
||||
"ax2.plot(ages, rbf2, color=color, label=\"gamma = 0.03\", linestyle=\"--\")\n",
|
||||
"ax2.tick_params(axis='y', labelcolor=color)\n",
|
||||
"ax2.set_ylabel(\"Age similarity\", color=color)\n",
|
||||
"\n",
|
||||
|
|
|
@ -89,8 +89,8 @@
|
|||
"plt.rc('font', size=14)\n",
|
||||
"plt.rc('axes', labelsize=14, titlesize=14)\n",
|
||||
"plt.rc('legend', fontsize=14)\n",
|
||||
"plt.rc('xtick',labelsize=10)\n",
|
||||
"plt.rc('ytick',labelsize=10)"
|
||||
"plt.rc('xtick', labelsize=10)\n",
|
||||
"plt.rc('ytick', labelsize=10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1471,7 +1471,7 @@
|
|||
"shifted_image_down = shift_image(image, 0, 5)\n",
|
||||
"shifted_image_left = shift_image(image, -5, 0)\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(12,3))\n",
|
||||
"plt.figure(figsize=(12, 3))\n",
|
||||
"plt.subplot(131)\n",
|
||||
"plt.title(\"Original\")\n",
|
||||
"plt.imshow(image.reshape(28, 28),\n",
|
||||
|
@ -2045,7 +2045,7 @@
|
|||
"plt.figure(figsize=(8, 4))\n",
|
||||
"plt.plot([1]*10, svm_scores, \".\")\n",
|
||||
"plt.plot([2]*10, forest_scores, \".\")\n",
|
||||
"plt.boxplot([svm_scores, forest_scores], labels=(\"SVM\",\"Random Forest\"))\n",
|
||||
"plt.boxplot([svm_scores, forest_scores], labels=(\"SVM\", \"Random Forest\"))\n",
|
||||
"plt.ylabel(\"Accuracy\")\n",
|
||||
"plt.show()"
|
||||
]
|
||||
|
@ -2321,7 +2321,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"for header, value in spam_emails[0].items():\n",
|
||||
" print(header,\":\",value)"
|
||||
" print(header, \":\", value)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -91,8 +91,8 @@
|
|||
"plt.rc('font', size=14)\n",
|
||||
"plt.rc('axes', labelsize=14, titlesize=14)\n",
|
||||
"plt.rc('legend', fontsize=14)\n",
|
||||
"plt.rc('xtick',labelsize=10)\n",
|
||||
"plt.rc('ytick',labelsize=10)"
|
||||
"plt.rc('xtick', labelsize=10)\n",
|
||||
"plt.rc('ytick', labelsize=10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -185,7 +185,7 @@
|
|||
" plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#AAA',\n",
|
||||
" zorder=-1)\n",
|
||||
"\n",
|
||||
"fig, axes = plt.subplots(ncols=2, figsize=(10,2.7), sharey=True)\n",
|
||||
"fig, axes = plt.subplots(ncols=2, figsize=(10, 2.7), sharey=True)\n",
|
||||
"\n",
|
||||
"plt.sca(axes[0])\n",
|
||||
"plt.plot(x0, pred_1, \"g--\", linewidth=2)\n",
|
||||
|
@ -231,7 +231,7 @@
|
|||
"X_scaled = scaler.fit_transform(Xs)\n",
|
||||
"svm_clf_scaled = SVC(kernel=\"linear\", C=100).fit(X_scaled, ys)\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(9,2.7))\n",
|
||||
"plt.figure(figsize=(9, 2.7))\n",
|
||||
"plt.subplot(121)\n",
|
||||
"plt.plot(Xs[:, 0][ys==1], Xs[:, 1][ys==1], \"bo\")\n",
|
||||
"plt.plot(Xs[:, 0][ys==0], Xs[:, 1][ys==0], \"ms\")\n",
|
||||
|
@ -281,7 +281,7 @@
|
|||
"svm_clf2 = SVC(kernel=\"linear\", C=10**9)\n",
|
||||
"svm_clf2.fit(Xo2, yo2)\n",
|
||||
"\n",
|
||||
"fig, axes = plt.subplots(ncols=2, figsize=(10,2.7), sharey=True)\n",
|
||||
"fig, axes = plt.subplots(ncols=2, figsize=(10, 2.7), sharey=True)\n",
|
||||
"\n",
|
||||
"plt.sca(axes[0])\n",
|
||||
"plt.plot(Xo1[:, 0][yo1==1], Xo1[:, 1][yo1==1], \"bs\")\n",
|
||||
|
@ -393,7 +393,7 @@
|
|||
"svm_clf1.support_vectors_ = X[support_vectors_idx1]\n",
|
||||
"svm_clf2.support_vectors_ = X[support_vectors_idx2]\n",
|
||||
"\n",
|
||||
"fig, axes = plt.subplots(ncols=2, figsize=(10,2.7), sharey=True)\n",
|
||||
"fig, axes = plt.subplots(ncols=2, figsize=(10, 2.7), sharey=True)\n",
|
||||
"\n",
|
||||
"plt.sca(axes[0])\n",
|
||||
"plt.plot(X[:, 0][y==1], X[:, 1][y==1], \"g^\", label=\"Iris virginica\")\n",
|
||||
|
@ -1121,7 +1121,7 @@
|
|||
"sgd_clf.support_vectors_ = X[support_vectors_idx]\n",
|
||||
"sgd_clf.C = C\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(5.5,3.2))\n",
|
||||
"plt.figure(figsize=(5.5, 3.2))\n",
|
||||
"plt.plot(X[:, 0][yr==1], X[:, 1][yr==1], \"g^\")\n",
|
||||
"plt.plot(X[:, 0][yr==0], X[:, 1][yr==0], \"bs\")\n",
|
||||
"plot_svc_decision_boundary(sgd_clf, 4, 6)\n",
|
||||
|
|
|
@ -91,8 +91,8 @@
|
|||
"plt.rc('font', size=14)\n",
|
||||
"plt.rc('axes', labelsize=14, titlesize=14)\n",
|
||||
"plt.rc('legend', fontsize=14)\n",
|
||||
"plt.rc('xtick',labelsize=10)\n",
|
||||
"plt.rc('ytick',labelsize=10)"
|
||||
"plt.rc('xtick', labelsize=10)\n",
|
||||
"plt.rc('ytick', labelsize=10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -215,7 +215,7 @@
|
|||
"\n",
|
||||
"# not in the book – just formatting details\n",
|
||||
"from matplotlib.colors import ListedColormap\n",
|
||||
"custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n",
|
||||
"custom_cmap = ListedColormap(['#fafab0', '#9898ff', '#a0faa0'])\n",
|
||||
"plt.figure(figsize=(8, 4))\n",
|
||||
"\n",
|
||||
"lengths, widths = np.meshgrid(np.linspace(0, 7.2, 100), np.linspace(0, 3, 100))\n",
|
||||
|
|
|
@ -91,8 +91,8 @@
|
|||
"plt.rc('font', size=14)\n",
|
||||
"plt.rc('axes', labelsize=14, titlesize=14)\n",
|
||||
"plt.rc('legend', fontsize=14)\n",
|
||||
"plt.rc('xtick',labelsize=10)\n",
|
||||
"plt.rc('ytick',labelsize=10)"
|
||||
"plt.rc('xtick', labelsize=10)\n",
|
||||
"plt.rc('ytick', labelsize=10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -144,7 +144,7 @@
|
|||
"cumulative_heads = coin_tosses.cumsum(axis=0)\n",
|
||||
"cumulative_heads_ratio = cumulative_heads / np.arange(1, 10001).reshape(-1, 1)\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(8,3.5))\n",
|
||||
"plt.figure(figsize=(8, 3.5))\n",
|
||||
"plt.plot(cumulative_heads_ratio)\n",
|
||||
"plt.plot([0, 10000], [0.51, 0.51], \"k--\", linewidth=2, label=\"51%\")\n",
|
||||
"plt.plot([0, 10000], [0.5, 0.5], \"k-\", label=\"50%\")\n",
|
||||
|
@ -484,7 +484,7 @@
|
|||
"\n",
|
||||
"m = len(X_train)\n",
|
||||
"\n",
|
||||
"fix, axes = plt.subplots(ncols=2, figsize=(10,4), sharey=True)\n",
|
||||
"fix, axes = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)\n",
|
||||
"for subplot, learning_rate in ((0, 1), (1, 0.5)):\n",
|
||||
" sample_weights = np.ones(m) / m\n",
|
||||
" plt.sca(axes[subplot])\n",
|
||||
|
@ -628,7 +628,7 @@
|
|||
" plt.legend(loc=\"upper center\")\n",
|
||||
" plt.axis(axes)\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(11,11))\n",
|
||||
"plt.figure(figsize=(11, 11))\n",
|
||||
"\n",
|
||||
"plt.subplot(3, 2, 1)\n",
|
||||
"plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.2, 0.8], style=\"g-\",\n",
|
||||
|
@ -717,7 +717,7 @@
|
|||
"source": [
|
||||
"# not in the book – this cell generates and saves Figure 7–10\n",
|
||||
"\n",
|
||||
"fix, axes = plt.subplots(ncols=2, figsize=(10,4), sharey=True)\n",
|
||||
"fix, axes = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)\n",
|
||||
"\n",
|
||||
"plt.sca(axes[0])\n",
|
||||
"plot_predictions([gbrt], X, y, axes=[-0.5, 0.5, -0.1, 0.8], style=\"r-\",\n",
|
||||
|
|
|
@ -138,13 +138,6 @@
|
|||
" plt.savefig(path, format=fig_extension, dpi=resolution)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
|
Loading…
Reference in New Issue