Little tweaks to beautify code in chapter 14

main
Aurélien Geron 2016-10-06 14:52:36 +02:00
parent 0d08368095
commit 4b15a6cf19
1 changed files with 3 additions and 3 deletions

View File

@ -558,7 +558,7 @@
"with tf.Session() as sess:\n", "with tf.Session() as sess:\n",
" init.run()\n", " init.run()\n",
" for epoch in range(n_epochs):\n", " for epoch in range(n_epochs):\n",
" for iteration in range(len(mnist.test.labels)//batch_size):\n", " for iteration in range(mnist.train.num_examples // batch_size):\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n", " X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" X_batch = X_batch.reshape((-1, n_steps, n_inputs))\n", " X_batch = X_batch.reshape((-1, n_steps, n_inputs))\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n", " sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
@ -627,7 +627,7 @@
"with tf.Session() as sess:\n", "with tf.Session() as sess:\n",
" init.run()\n", " init.run()\n",
" for epoch in range(n_epochs):\n", " for epoch in range(n_epochs):\n",
" for iteration in range(len(mnist.test.labels)//batch_size):\n", " for iteration in range(mnist.train.num_examples // batch_size):\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n", " X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" X_batch = X_batch.reshape((-1, n_steps, n_inputs))\n", " X_batch = X_batch.reshape((-1, n_steps, n_inputs))\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n", " sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
@ -1187,7 +1187,7 @@
"with tf.Session() as sess:\n", "with tf.Session() as sess:\n",
" init.run()\n", " init.run()\n",
" for epoch in range(n_epochs):\n", " for epoch in range(n_epochs):\n",
" for iteration in range(len(mnist.test.labels)//batch_size):\n", " for iteration in range(mnist.train.num_examples // batch_size):\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n", " X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" X_batch = X_batch.reshape((batch_size, n_steps, n_inputs))\n", " X_batch = X_batch.reshape((batch_size, n_steps, n_inputs))\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n", " sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",