diff --git a/03_classification.ipynb b/03_classification.ipynb index d124fd2..4c82d3f 100644 --- a/03_classification.ipynb +++ b/03_classification.ipynb @@ -495,14 +495,20 @@ " plt.grid(True) # Not shown\n", " plt.axis([-50000, 50000, 0, 1]) # Not shown\n", "\n", - "plt.figure(figsize=(8, 4)) # Not shown\n", + "\n", + "\n", + "recall_90_precision = recalls[np.argmax(precisions >= 0.90)]\n", + "threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)]\n", + "\n", + "\n", + "plt.figure(figsize=(8, 4)) # Not shown\n", "plot_precision_recall_vs_threshold(precisions, recalls, thresholds)\n", - "plt.plot([7813, 7813], [0., 0.9], \"r:\") # Not shown\n", - "plt.plot([-50000, 7813], [0.9, 0.9], \"r:\") # Not shown\n", - "plt.plot([-50000, 7813], [0.4368, 0.4368], \"r:\")# Not shown\n", - "plt.plot([7813], [0.9], \"ro\") # Not shown\n", - "plt.plot([7813], [0.4368], \"ro\") # Not shown\n", - "save_fig(\"precision_recall_vs_threshold_plot\") # Not shown\n", + "plt.plot([threshold_90_precision, threshold_90_precision], [0., 0.9], \"r:\") # Not shown\n", + "plt.plot([-50000, threshold_90_precision], [0.9, 0.9], \"r:\") # Not shown\n", + "plt.plot([-50000, threshold_90_precision], [recall_90_precision, recall_90_precision], \"r:\")# Not shown\n", + "plt.plot([threshold_90_precision], [0.9], \"ro\") # Not shown\n", + "plt.plot([threshold_90_precision], [recall_90_precision], \"ro\") # Not shown\n", + "save_fig(\"precision_recall_vs_threshold_plot\") # Not shown\n", "plt.show()" ] }, diff --git a/11_training_deep_neural_networks.ipynb b/11_training_deep_neural_networks.ipynb index 067bf9a..4c4df8c 100644 --- a/11_training_deep_neural_networks.ipynb +++ b/11_training_deep_neural_networks.ipynb @@ -717,8 +717,8 @@ " keras.layers.BatchNormalization(),\n", " keras.layers.Activation(\"relu\"),\n", " keras.layers.Dense(100, use_bias=False),\n", - " keras.layers.Activation(\"relu\"),\n", " keras.layers.BatchNormalization(),\n", + " keras.layers.Activation(\"relu\"),\n", " keras.layers.Dense(10, activation=\"softmax\")\n", "])" ] diff --git a/INSTALL.md b/INSTALL.md index 25a4991..fc5bc34 100644 --- a/INSTALL.md +++ b/INSTALL.md @@ -45,7 +45,7 @@ If you're on Windows, and you want to go through chapter 18 on Reinforcement Lea ## Start Jupyter -You're almost there! You just need to register the `tf2` conda environment to Jupyter. The notebooks in this project will defaut to the environment named `python3`, so it's best to register this environment using the name `python3` (if you prefer to use another name, you will have to select it in the "Kernel > Change kernel..." menu in Jupyter every time you open a notebook): +You're almost there! You just need to register the `tf2` conda environment to Jupyter. The notebooks in this project will default to the environment named `python3`, so it's best to register this environment using the name `python3` (if you prefer to use another name, you will have to select it in the "Kernel > Change kernel..." menu in Jupyter every time you open a notebook): $ python3 -m ipykernel install --user --name=python3 diff --git a/math_linear_algebra.ipynb b/math_linear_algebra.ipynb index e281e26..d9e968b 100644 --- a/math_linear_algebra.ipynb +++ b/math_linear_algebra.ipynb @@ -525,7 +525,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As you might guess, dividing a vector by a scalar is equivalent to multiplying by its inverse:\n", + "As you might guess, dividing a vector by a scalar is equivalent to multiplying by its multiplicative inverse (reciprocal):\n", "\n", "$\\dfrac{\\textbf{u}}{\\lambda} = \\dfrac{1}{\\lambda} \\times \\textbf{u}$" ] @@ -1062,7 +1062,7 @@ " Q_{m1} + R_{m1} & Q_{m2} + R_{m2} & Q_{m3} + R_{m3} & \\cdots & Q_{mn} + R_{mn} \\\\\n", "\\end{bmatrix}$\n", "\n", - "For example, let's create a $2 \\times 3$ matric $B$ and compute $A + B$:" + "For example, let's create a $2 \\times 3$ matrix $B$ and compute $A + B$:" ] }, {