Use as_frame=False for fetch_open_ml(), and svd_solver=full for PCA, fixes #358
parent
9fede98b42
commit
5663779ae8
|
@ -761,6 +761,13 @@
|
||||||
"# MNIST compression"
|
"# MNIST compression"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Warning:** since Scikit-Learn 0.24, `fetch_openml()` returns a Pandas `DataFrame` by default. To avoid this and keep the same code as in the book, we set `as_frame=True`."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 31,
|
"execution_count": 31,
|
||||||
|
@ -769,7 +776,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"from sklearn.datasets import fetch_openml\n",
|
"from sklearn.datasets import fetch_openml\n",
|
||||||
"\n",
|
"\n",
|
||||||
"mnist = fetch_openml('mnist_784', version=1)\n",
|
"mnist = fetch_openml('mnist_784', version=1, as_frame=False)\n",
|
||||||
"mnist.target = mnist.target.astype(np.uint8)"
|
"mnist.target = mnist.target.astype(np.uint8)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -1101,15 +1108,15 @@
|
||||||
"\n",
|
"\n",
|
||||||
"for n_components in (2, 10, 154):\n",
|
"for n_components in (2, 10, 154):\n",
|
||||||
" print(\"n_components =\", n_components)\n",
|
" print(\"n_components =\", n_components)\n",
|
||||||
" regular_pca = PCA(n_components=n_components)\n",
|
" regular_pca = PCA(n_components=n_components, svd_solver=\"full\")\n",
|
||||||
" inc_pca = IncrementalPCA(n_components=n_components, batch_size=500)\n",
|
" inc_pca = IncrementalPCA(n_components=n_components, batch_size=500)\n",
|
||||||
" rnd_pca = PCA(n_components=n_components, random_state=42, svd_solver=\"randomized\")\n",
|
" rnd_pca = PCA(n_components=n_components, random_state=42, svd_solver=\"randomized\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
" for pca in (regular_pca, inc_pca, rnd_pca):\n",
|
" for name, pca in ((\"PCA\", regular_pca), (\"Inc PCA\", inc_pca), (\"Rnd PCA\", rnd_pca)):\n",
|
||||||
" t1 = time.time()\n",
|
" t1 = time.time()\n",
|
||||||
" pca.fit(X_train)\n",
|
" pca.fit(X_train)\n",
|
||||||
" t2 = time.time()\n",
|
" t2 = time.time()\n",
|
||||||
" print(\" {}: {:.1f} seconds\".format(pca.__class__.__name__, t2 - t1))"
|
" print(\" {}: {:.1f} seconds\".format(name, t2 - t1))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1135,7 +1142,7 @@
|
||||||
" pca.fit(X)\n",
|
" pca.fit(X)\n",
|
||||||
" t2 = time.time()\n",
|
" t2 = time.time()\n",
|
||||||
" times_rpca.append(t2 - t1)\n",
|
" times_rpca.append(t2 - t1)\n",
|
||||||
" pca = PCA(n_components = 2)\n",
|
" pca = PCA(n_components=2, svd_solver=\"full\")\n",
|
||||||
" t1 = time.time()\n",
|
" t1 = time.time()\n",
|
||||||
" pca.fit(X)\n",
|
" pca.fit(X)\n",
|
||||||
" t2 = time.time()\n",
|
" t2 = time.time()\n",
|
||||||
|
@ -1174,7 +1181,7 @@
|
||||||
" pca.fit(X)\n",
|
" pca.fit(X)\n",
|
||||||
" t2 = time.time()\n",
|
" t2 = time.time()\n",
|
||||||
" times_rpca.append(t2 - t1)\n",
|
" times_rpca.append(t2 - t1)\n",
|
||||||
" pca = PCA(n_components = 2)\n",
|
" pca = PCA(n_components=2, svd_solver=\"full\")\n",
|
||||||
" t1 = time.time()\n",
|
" t1 = time.time()\n",
|
||||||
" pca.fit(X)\n",
|
" pca.fit(X)\n",
|
||||||
" t2 = time.time()\n",
|
" t2 = time.time()\n",
|
||||||
|
@ -2252,7 +2259,7 @@
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.7.8"
|
"version": "3.7.9"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
Loading…
Reference in New Issue