Add xgboost example and upgrade to latest matplotlib version
parent
d9fdb0542b
commit
581253b47a
|
@ -31,9 +31,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# To support both python 2 and python 3\n",
|
||||
|
@ -107,9 +105,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
|
@ -136,8 +132,7 @@
|
|||
"\n",
|
||||
"voting_clf = VotingClassifier(\n",
|
||||
" estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n",
|
||||
" voting='hard')\n",
|
||||
"voting_clf.fit(X_train, y_train)"
|
||||
" voting='hard')"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -145,6 +140,15 @@
|
|||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"voting_clf.fit(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.metrics import accuracy_score\n",
|
||||
"\n",
|
||||
|
@ -156,7 +160,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -172,7 +176,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -193,10 +197,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.ensemble import BaggingClassifier\n",
|
||||
|
@ -211,7 +213,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -221,7 +223,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -233,10 +235,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from matplotlib.colors import ListedColormap\n",
|
||||
|
@ -248,7 +248,7 @@
|
|||
" X_new = np.c_[x1.ravel(), x2.ravel()]\n",
|
||||
" y_pred = clf.predict(X_new).reshape(x1.shape)\n",
|
||||
" custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n",
|
||||
" plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap, linewidth=10)\n",
|
||||
" plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap)\n",
|
||||
" if contour:\n",
|
||||
" custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])\n",
|
||||
" plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n",
|
||||
|
@ -261,7 +261,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -285,7 +285,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -296,7 +296,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -306,10 +306,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.ensemble import RandomForestClassifier\n",
|
||||
|
@ -322,7 +320,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -331,7 +329,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -345,7 +343,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -354,7 +352,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -378,7 +376,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -391,7 +389,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -400,7 +398,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -418,10 +416,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.datasets import fetch_mldata\n",
|
||||
|
@ -430,7 +426,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -440,10 +436,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plot_digit(data):\n",
|
||||
|
@ -455,7 +449,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -477,7 +471,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -491,7 +485,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -500,7 +494,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -509,28 +503,28 @@
|
|||
"plt.figure(figsize=(11, 4))\n",
|
||||
"for subplot, learning_rate in ((121, 1), (122, 0.5)):\n",
|
||||
" sample_weights = np.ones(m)\n",
|
||||
" plt.subplot(subplot)\n",
|
||||
" for i in range(5):\n",
|
||||
" plt.subplot(subplot)\n",
|
||||
" svm_clf = SVC(kernel=\"rbf\", C=0.05, random_state=42)\n",
|
||||
" svm_clf.fit(X_train, y_train, sample_weight=sample_weights)\n",
|
||||
" y_pred = svm_clf.predict(X_train)\n",
|
||||
" sample_weights[y_pred != y_train] *= (1 + learning_rate)\n",
|
||||
" plot_decision_boundary(svm_clf, X, y, alpha=0.2)\n",
|
||||
" plt.title(\"learning_rate = {}\".format(learning_rate), fontsize=16)\n",
|
||||
" if subplot == 121:\n",
|
||||
" plt.text(-0.7, -0.65, \"1\", fontsize=14)\n",
|
||||
" plt.text(-0.6, -0.10, \"2\", fontsize=14)\n",
|
||||
" plt.text(-0.5, 0.10, \"3\", fontsize=14)\n",
|
||||
" plt.text(-0.4, 0.55, \"4\", fontsize=14)\n",
|
||||
" plt.text(-0.3, 0.90, \"5\", fontsize=14)\n",
|
||||
"\n",
|
||||
"plt.subplot(121)\n",
|
||||
"plt.text(-0.7, -0.65, \"1\", fontsize=14)\n",
|
||||
"plt.text(-0.6, -0.10, \"2\", fontsize=14)\n",
|
||||
"plt.text(-0.5, 0.10, \"3\", fontsize=14)\n",
|
||||
"plt.text(-0.4, 0.55, \"4\", fontsize=14)\n",
|
||||
"plt.text(-0.3, 0.90, \"5\", fontsize=14)\n",
|
||||
"save_fig(\"boosting_plot\")\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -546,10 +540,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.random.seed(42)\n",
|
||||
|
@ -559,7 +551,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -571,7 +563,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"execution_count": 35,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -582,7 +574,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"execution_count": 36,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -591,24 +583,13 @@
|
|||
"tree_reg3.fit(X, y3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_new = np.array([[0.8]])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))"
|
||||
"X_new = np.array([[0.8]])"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -617,7 +598,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred"
|
||||
"y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -625,6 +606,15 @@
|
|||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plot_predictions(regressors, X, y, axes, label=None, style=\"r-\", data_style=\"b.\", data_label=None):\n",
|
||||
" x1 = np.linspace(axes[0], axes[1], 500)\n",
|
||||
|
@ -671,7 +661,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"execution_count": 41,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -683,7 +673,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -693,7 +683,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"execution_count": 43,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -720,7 +710,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"execution_count": 44,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -743,10 +733,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 45,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"min_error = np.min(errors)"
|
||||
|
@ -754,7 +742,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -780,7 +768,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"execution_count": 47,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -804,13 +792,88 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"execution_count": 48,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(gbrt.n_estimators)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Minimum validation MSE:\", min_val_error)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Using XGBoost"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" import xgboost\n",
|
||||
"except ImportError as ex:\n",
|
||||
" print(\"Error: the xgboost library is not installed.\")\n",
|
||||
" xgboost = None"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if xgboost is not None: # not shown in the book\n",
|
||||
" xgb_reg = xgboost.XGBRegressor(random_state=42)\n",
|
||||
" xgb_reg.fit(X_train, y_train)\n",
|
||||
" y_pred = xgb_reg.predict(X_val)\n",
|
||||
" val_error = mean_squared_error(y_val, y_pred)\n",
|
||||
" print(\"Validation MSE:\", val_error)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if xgboost is not None: # not shown in the book\n",
|
||||
" xgb_reg.fit(X_train, y_train,\n",
|
||||
" eval_set=[(X_val, y_val)], early_stopping_rounds=2)\n",
|
||||
" y_pred = xgb_reg.predict(X_val)\n",
|
||||
" val_error = mean_squared_error(y_val, y_pred)\n",
|
||||
" print(\"Validation MSE:\", val_error)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%timeit xgboost.XGBRegressor().fit(X_train, y_train) if xgboost is not None else None"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%timeit GradientBoostingRegressor().fit(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
|
@ -830,9 +893,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue