Add xgboost example and upgrade to latest matplotlib version

main
Aurélien Geron 2018-05-08 12:43:49 +02:00
parent d9fdb0542b
commit 581253b47a
1 changed files with 151 additions and 90 deletions

View File

@ -31,9 +31,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 1,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"# To support both python 2 and python 3\n", "# To support both python 2 and python 3\n",
@ -107,9 +105,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 4,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import train_test_split\n",
@ -136,8 +132,7 @@
"\n", "\n",
"voting_clf = VotingClassifier(\n", "voting_clf = VotingClassifier(\n",
" estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n", " estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n",
" voting='hard')\n", " voting='hard')"
"voting_clf.fit(X_train, y_train)"
] ]
}, },
{ {
@ -145,6 +140,15 @@
"execution_count": 6, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [
"voting_clf.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [ "source": [
"from sklearn.metrics import accuracy_score\n", "from sklearn.metrics import accuracy_score\n",
"\n", "\n",
@ -156,7 +160,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -172,7 +176,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -193,10 +197,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 10,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.ensemble import BaggingClassifier\n", "from sklearn.ensemble import BaggingClassifier\n",
@ -211,7 +213,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 11,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -221,7 +223,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 12,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -233,10 +235,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 13,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"from matplotlib.colors import ListedColormap\n", "from matplotlib.colors import ListedColormap\n",
@ -248,7 +248,7 @@
" X_new = np.c_[x1.ravel(), x2.ravel()]\n", " X_new = np.c_[x1.ravel(), x2.ravel()]\n",
" y_pred = clf.predict(X_new).reshape(x1.shape)\n", " y_pred = clf.predict(X_new).reshape(x1.shape)\n",
" custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n", " custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n",
" plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap, linewidth=10)\n", " plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap)\n",
" if contour:\n", " if contour:\n",
" custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])\n", " custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])\n",
" plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n", " plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n",
@ -261,7 +261,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 14,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -285,7 +285,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 15,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -296,7 +296,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 16,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -306,10 +306,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 16, "execution_count": 17,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.ensemble import RandomForestClassifier\n",
@ -322,7 +320,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 18,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -331,7 +329,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 19,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -345,7 +343,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": 20,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -354,7 +352,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 20, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -378,7 +376,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 21, "execution_count": 22,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -391,7 +389,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -400,7 +398,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 23, "execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -418,10 +416,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 24, "execution_count": 25,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.datasets import fetch_mldata\n", "from sklearn.datasets import fetch_mldata\n",
@ -430,7 +426,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 25, "execution_count": 26,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -440,10 +436,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 26, "execution_count": 27,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"def plot_digit(data):\n", "def plot_digit(data):\n",
@ -455,7 +449,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 27, "execution_count": 28,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -477,7 +471,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 28, "execution_count": 29,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -491,7 +485,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 29, "execution_count": 30,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -500,7 +494,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 31,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -509,28 +503,28 @@
"plt.figure(figsize=(11, 4))\n", "plt.figure(figsize=(11, 4))\n",
"for subplot, learning_rate in ((121, 1), (122, 0.5)):\n", "for subplot, learning_rate in ((121, 1), (122, 0.5)):\n",
" sample_weights = np.ones(m)\n", " sample_weights = np.ones(m)\n",
" plt.subplot(subplot)\n",
" for i in range(5):\n", " for i in range(5):\n",
" plt.subplot(subplot)\n",
" svm_clf = SVC(kernel=\"rbf\", C=0.05, random_state=42)\n", " svm_clf = SVC(kernel=\"rbf\", C=0.05, random_state=42)\n",
" svm_clf.fit(X_train, y_train, sample_weight=sample_weights)\n", " svm_clf.fit(X_train, y_train, sample_weight=sample_weights)\n",
" y_pred = svm_clf.predict(X_train)\n", " y_pred = svm_clf.predict(X_train)\n",
" sample_weights[y_pred != y_train] *= (1 + learning_rate)\n", " sample_weights[y_pred != y_train] *= (1 + learning_rate)\n",
" plot_decision_boundary(svm_clf, X, y, alpha=0.2)\n", " plot_decision_boundary(svm_clf, X, y, alpha=0.2)\n",
" plt.title(\"learning_rate = {}\".format(learning_rate), fontsize=16)\n", " plt.title(\"learning_rate = {}\".format(learning_rate), fontsize=16)\n",
" if subplot == 121:\n",
" plt.text(-0.7, -0.65, \"1\", fontsize=14)\n",
" plt.text(-0.6, -0.10, \"2\", fontsize=14)\n",
" plt.text(-0.5, 0.10, \"3\", fontsize=14)\n",
" plt.text(-0.4, 0.55, \"4\", fontsize=14)\n",
" plt.text(-0.3, 0.90, \"5\", fontsize=14)\n",
"\n", "\n",
"plt.subplot(121)\n",
"plt.text(-0.7, -0.65, \"1\", fontsize=14)\n",
"plt.text(-0.6, -0.10, \"2\", fontsize=14)\n",
"plt.text(-0.5, 0.10, \"3\", fontsize=14)\n",
"plt.text(-0.4, 0.55, \"4\", fontsize=14)\n",
"plt.text(-0.3, 0.90, \"5\", fontsize=14)\n",
"save_fig(\"boosting_plot\")\n", "save_fig(\"boosting_plot\")\n",
"plt.show()" "plt.show()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 31, "execution_count": 32,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -546,10 +540,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 32, "execution_count": 33,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"np.random.seed(42)\n", "np.random.seed(42)\n",
@ -559,7 +551,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 33, "execution_count": 34,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -571,7 +563,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 34, "execution_count": 35,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -582,7 +574,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 35, "execution_count": 36,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -591,24 +583,13 @@
"tree_reg3.fit(X, y3)" "tree_reg3.fit(X, y3)"
] ]
}, },
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X_new = np.array([[0.8]])"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 37, "execution_count": 37,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))" "X_new = np.array([[0.8]])"
] ]
}, },
{ {
@ -617,7 +598,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"y_pred" "y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))"
] ]
}, },
{ {
@ -625,6 +606,15 @@
"execution_count": 39, "execution_count": 39,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [
"y_pred"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [ "source": [
"def plot_predictions(regressors, X, y, axes, label=None, style=\"r-\", data_style=\"b.\", data_label=None):\n", "def plot_predictions(regressors, X, y, axes, label=None, style=\"r-\", data_style=\"b.\", data_label=None):\n",
" x1 = np.linspace(axes[0], axes[1], 500)\n", " x1 = np.linspace(axes[0], axes[1], 500)\n",
@ -671,7 +661,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 40, "execution_count": 41,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -683,7 +673,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 41, "execution_count": 42,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -693,7 +683,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 42, "execution_count": 43,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -720,7 +710,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 43, "execution_count": 44,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -743,10 +733,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 44, "execution_count": 45,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"min_error = np.min(errors)" "min_error = np.min(errors)"
@ -754,7 +742,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 45, "execution_count": 46,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -780,7 +768,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 46, "execution_count": 47,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -804,13 +792,88 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 47, "execution_count": 48,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(gbrt.n_estimators)" "print(gbrt.n_estimators)"
] ]
}, },
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"print(\"Minimum validation MSE:\", min_val_error)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using XGBoost"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" import xgboost\n",
"except ImportError as ex:\n",
" print(\"Error: the xgboost library is not installed.\")\n",
" xgboost = None"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"if xgboost is not None: # not shown in the book\n",
" xgb_reg = xgboost.XGBRegressor(random_state=42)\n",
" xgb_reg.fit(X_train, y_train)\n",
" y_pred = xgb_reg.predict(X_val)\n",
" val_error = mean_squared_error(y_val, y_pred)\n",
" print(\"Validation MSE:\", val_error)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"if xgboost is not None: # not shown in the book\n",
" xgb_reg.fit(X_train, y_train,\n",
" eval_set=[(X_val, y_val)], early_stopping_rounds=2)\n",
" y_pred = xgb_reg.predict(X_val)\n",
" val_error = mean_squared_error(y_val, y_pred)\n",
" print(\"Validation MSE:\", val_error)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"%timeit xgboost.XGBRegressor().fit(X_train, y_train) if xgboost is not None else None"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"%timeit GradientBoostingRegressor().fit(X_train, y_train)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
@ -830,9 +893,7 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {},
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [] "source": []
} }