Add exercise solutions for chapter 10, and improve code sync between book and notebook

main
Aurélien Geron 2017-06-02 22:01:22 +02:00
parent 3680f6a27c
commit 6281e153cd
1 changed files with 592 additions and 113 deletions

View File

@ -44,7 +44,7 @@
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 1,
"metadata": { "metadata": {
"collapsed": true, "collapsed": false,
"deletable": true, "deletable": true,
"editable": true "editable": true
}, },
@ -101,10 +101,18 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"import numpy as np\n",
"from sklearn.datasets import load_iris\n", "from sklearn.datasets import load_iris\n",
"from sklearn.linear_model import Perceptron\n",
"\n",
"iris = load_iris()\n", "iris = load_iris()\n",
"X = iris.data[:, (2, 3)] # petal length, petal width\n", "X = iris.data[:, (2, 3)] # petal length, petal width\n",
"y = (iris.target == 0).astype(np.int)" "y = (iris.target == 0).astype(np.int)\n",
"\n",
"per_clf = Perceptron(random_state=42)\n",
"per_clf.fit(X, y)\n",
"\n",
"y_pred = per_clf.predict([[2, 0.5]])"
] ]
}, },
{ {
@ -117,12 +125,6 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.linear_model import Perceptron\n",
"\n",
"per_clf = Perceptron(random_state=42)\n",
"per_clf.fit(X, y)\n",
"\n",
"y_pred = per_clf.predict([[2, 0.5]])\n",
"y_pred" "y_pred"
] ]
}, },
@ -322,29 +324,24 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from tensorflow.examples.tutorials.mnist import input_data\n", "from tensorflow.examples.tutorials.mnist import input_data\n",
"mnist = input_data.read_data_sets(\"/tmp/data/\")\n", "\n",
"X_train = mnist.train.images\n", "mnist = input_data.read_data_sets(\"/tmp/data/\")"
"X_test = mnist.test.images\n",
"y_train = mnist.train.labels.astype(\"int\")\n",
"y_test = mnist.test.labels.astype(\"int\")"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 10,
"metadata": { "metadata": {
"collapsed": false, "collapsed": true,
"deletable": true, "deletable": true,
"editable": true "editable": true
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"import tensorflow as tf\n", "X_train = mnist.train.images\n",
"\n", "X_test = mnist.test.images\n",
"feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(X_train)\n", "y_train = mnist.train.labels.astype(\"int\")\n",
"dnn_clf = tf.contrib.learn.DNNClassifier(hidden_units=[300, 100], n_classes=10,\n", "y_test = mnist.test.labels.astype(\"int\")"
" feature_columns=feature_columns)\n",
"dnn_clf.fit(x=X_train, y=y_train, batch_size=50, steps=40000)"
] ]
}, },
{ {
@ -357,11 +354,13 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.metrics import accuracy_score\n", "import tensorflow as tf\n",
"\n", "\n",
"y_pred = list(dnn_clf.predict(X_test))\n", "feature_cols = tf.contrib.learn.infer_real_valued_columns_from_input(X_train)\n",
"accuracy = accuracy_score(y_test, y_pred)\n", "dnn_clf = tf.contrib.learn.DNNClassifier(hidden_units=[300,100], n_classes=10,\n",
"accuracy" " feature_columns=feature_cols)\n",
"dnn_clf = tf.contrib.learn.SKCompat(dnn_clf) # if TensorFlow >= 1.1\n",
"dnn_clf.fit(X_train, y_train, batch_size=50, steps=40000)"
] ]
}, },
{ {
@ -374,10 +373,10 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"from sklearn.metrics import log_loss\n", "from sklearn.metrics import accuracy_score\n",
"\n", "\n",
"y_pred_proba = list(dnn_clf.predict_proba(X_test))\n", "y_pred = dnn_clf.predict(X_test)\n",
"log_loss(y_test, y_pred_proba)" "accuracy_score(y_test, y_pred['classes'])"
] ]
}, },
{ {
@ -390,7 +389,10 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"dnn_clf.evaluate(X_test, y_test)" "from sklearn.metrics import log_loss\n",
"\n",
"y_pred_proba = y_pred['probabilities']\n",
"log_loss(y_test, y_pred_proba)"
] ]
}, },
{ {
@ -408,7 +410,7 @@
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 14,
"metadata": { "metadata": {
"collapsed": true, "collapsed": false,
"deletable": true, "deletable": true,
"editable": true "editable": true
}, },
@ -416,18 +418,10 @@
"source": [ "source": [
"import tensorflow as tf\n", "import tensorflow as tf\n",
"\n", "\n",
"def neuron_layer(X, n_neurons, name, activation=None):\n", "n_inputs = 28*28 # MNIST\n",
" with tf.name_scope(name):\n", "n_hidden1 = 300\n",
" n_inputs = int(X.get_shape()[1])\n", "n_hidden2 = 100\n",
" stddev = 1 / np.sqrt(n_inputs)\n", "n_outputs = 10"
" init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)\n",
" W = tf.Variable(init, name=\"weights\")\n",
" b = tf.Variable(tf.zeros([n_neurons]), name=\"biases\")\n",
" Z = tf.matmul(X, W) + b\n",
" if activation==\"relu\":\n",
" return tf.nn.relu(Z)\n",
" else:\n",
" return Z"
] ]
}, },
{ {
@ -442,60 +436,32 @@
"source": [ "source": [
"tf.reset_default_graph()\n", "tf.reset_default_graph()\n",
"\n", "\n",
"n_inputs = 28*28 # MNIST\n",
"n_hidden1 = 300\n",
"n_hidden2 = 100\n",
"n_outputs = 10\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n", "X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n",
"y = tf.placeholder(tf.int64, shape=(None), name=\"y\")\n", "y = tf.placeholder(tf.int64, shape=(None), name=\"y\")"
"\n",
"with tf.name_scope(\"dnn\"):\n",
" hidden1 = neuron_layer(X, n_hidden1, \"hidden1\", activation=\"relu\")\n",
" hidden2 = neuron_layer(hidden1, n_hidden2, \"hidden2\", activation=\"relu\")\n",
" logits = neuron_layer(hidden2, n_outputs, \"output\")\n",
"\n",
"with tf.name_scope(\"loss\"):\n",
" xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n",
" loss = tf.reduce_mean(xentropy, name=\"loss\")\n",
"\n",
"with tf.name_scope(\"train\"):\n",
" optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n",
" training_op = optimizer.minimize(loss)\n",
"\n",
"with tf.name_scope(\"eval\"):\n",
" correct = tf.nn.in_top_k(logits, y, 1)\n",
" accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n",
" \n",
"init = tf.global_variables_initializer()\n",
"saver = tf.train.Saver()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 16, "execution_count": 16,
"metadata": { "metadata": {
"collapsed": false, "collapsed": true,
"deletable": true, "deletable": true,
"editable": true "editable": true
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"n_epochs = 20\n", "def neuron_layer(X, n_neurons, name, activation=None):\n",
"batch_size = 50\n", " with tf.name_scope(name):\n",
"\n", " n_inputs = int(X.get_shape()[1])\n",
"with tf.Session() as sess:\n", " stddev = 2 / np.sqrt(n_inputs)\n",
" init.run()\n", " init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)\n",
" for epoch in range(n_epochs):\n", " W = tf.Variable(init, name=\"kernel\")\n",
" for iteration in range(mnist.train.num_examples // batch_size):\n", " b = tf.Variable(tf.zeros([n_neurons]), name=\"bias\")\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n", " Z = tf.matmul(X, W) + b\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n", " if activation is not None:\n",
" acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n", " return activation(Z)\n",
" acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})\n", " else:\n",
" print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)\n", " return Z"
"\n",
" save_path = saver.save(sess, \"./my_model_final.ckpt\")"
] ]
}, },
{ {
@ -508,12 +474,12 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"with tf.Session() as sess:\n", "with tf.name_scope(\"dnn\"):\n",
" saver.restore(sess, save_path) #\"my_model_final.ckpt\")\n", " hidden1 = neuron_layer(X, n_hidden1, name=\"hidden1\",\n",
" X_new_scaled = mnist.test.images[:20]\n", " activation=tf.nn.relu)\n",
" Z = logits.eval(feed_dict={X: X_new_scaled})\n", " hidden2 = neuron_layer(hidden1, n_hidden2, name=\"hidden2\",\n",
" print(np.argmax(Z, axis=1))\n", " activation=tf.nn.relu)\n",
" print(mnist.test.labels[:20])" " logits = neuron_layer(hidden2, n_outputs, name=\"outputs\")"
] ]
}, },
{ {
@ -525,6 +491,137 @@
"editable": true "editable": true
}, },
"outputs": [], "outputs": [],
"source": [
"with tf.name_scope(\"loss\"):\n",
" xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,\n",
" logits=logits)\n",
" loss = tf.reduce_mean(xentropy, name=\"loss\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"learning_rate = 0.01\n",
"\n",
"with tf.name_scope(\"train\"):\n",
" optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n",
" training_op = optimizer.minimize(loss)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"eval\"):\n",
" correct = tf.nn.in_top_k(logits, y, 1)\n",
" accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()\n",
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"n_epochs = 40\n",
"batch_size = 50"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" init.run()\n",
" for epoch in range(n_epochs):\n",
" for iteration in range(mnist.train.num_examples // batch_size):\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n",
" acc_test = accuracy.eval(feed_dict={X: mnist.test.images,\n",
" y: mnist.test.labels})\n",
" print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)\n",
"\n",
" save_path = saver.save(sess, \"./my_model_final.ckpt\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" saver.restore(sess, \"./my_model_final.ckpt\") # or better, use save_path\n",
" X_new_scaled = mnist.test.images[:20]\n",
" Z = logits.eval(feed_dict={X: X_new_scaled})\n",
" y_pred = np.argmax(Z, axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"print(\"Predicted classes:\", y_pred)\n",
"print(\"Actual classes: \", mnist.test.labels[:20])"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [ "source": [
"from IPython.display import clear_output, Image, display, HTML\n", "from IPython.display import clear_output, Image, display, HTML\n",
"\n", "\n",
@ -566,7 +663,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": 27,
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"deletable": true, "deletable": true,
@ -589,7 +686,10 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"deletable": true,
"editable": true
},
"source": [ "source": [
"Note: the book uses `tensorflow.contrib.layers.fully_connected()` rather than `tf.layers.dense()` (which did not exist when this chapter was written). It is now preferable to use `tf.layers.dense()`, because anything in the contrib module may change or be deleted without notice. The `dense()` function is almost identical to the `fully_connected()` function, except for a few minor differences:\n", "Note: the book uses `tensorflow.contrib.layers.fully_connected()` rather than `tf.layers.dense()` (which did not exist when this chapter was written). It is now preferable to use `tf.layers.dense()`, because anything in the contrib module may change or be deleted without notice. The `dense()` function is almost identical to the `fully_connected()` function, except for a few minor differences:\n",
"* several parameters are renamed: `scope` becomes `name`, `activation_fn` becomes `activation` (and similarly the `_fn` suffix is removed from other parameters such as `normalizer_fn`), `weights_initializer` becomes `kernel_initializer`, etc.\n", "* several parameters are renamed: `scope` becomes `name`, `activation_fn` becomes `activation` (and similarly the `_fn` suffix is removed from other parameters such as `normalizer_fn`), `weights_initializer` becomes `kernel_initializer`, etc.\n",
@ -599,7 +699,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 20, "execution_count": 28,
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"deletable": true, "deletable": true,
@ -607,41 +707,102 @@
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"tf.reset_default_graph()\n",
"\n",
"n_inputs = 28*28 # MNIST\n", "n_inputs = 28*28 # MNIST\n",
"n_hidden1 = 300\n", "n_hidden1 = 300\n",
"n_hidden2 = 100\n", "n_hidden2 = 100\n",
"n_outputs = 10\n", "n_outputs = 10"
"learning_rate = 0.01\n", ]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n", "\n",
"X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n", "X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n",
"y = tf.placeholder(tf.int64, shape=(None), name=\"y\")\n", "y = tf.placeholder(tf.int64, shape=(None), name=\"y\") "
"\n", ]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"dnn\"):\n", "with tf.name_scope(\"dnn\"):\n",
" hidden1 = tf.layers.dense(X, n_hidden1, name=\"hidden1\", activation=tf.nn.relu)\n", " hidden1 = tf.layers.dense(X, n_hidden1, name=\"hidden1\",\n",
" hidden2 = tf.layers.dense(hidden1, n_hidden2, name=\"hidden2\", activation=tf.nn.relu)\n", " activation=tf.nn.relu)\n",
" logits = tf.layers.dense(hidden2, n_outputs, name=\"outputs\")\n", " hidden2 = tf.layers.dense(hidden1, n_hidden2, name=\"hidden2\",\n",
"\n", " activation=tf.nn.relu)\n",
" logits = tf.layers.dense(hidden2, n_outputs, name=\"outputs\")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"loss\"):\n", "with tf.name_scope(\"loss\"):\n",
" xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n", " xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n",
" loss = tf.reduce_mean(xentropy, name=\"loss\")\n", " loss = tf.reduce_mean(xentropy, name=\"loss\")"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"learning_rate = 0.01\n",
"\n", "\n",
"with tf.name_scope(\"train\"):\n", "with tf.name_scope(\"train\"):\n",
" optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n", " optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n",
" training_op = optimizer.minimize(loss)\n", " training_op = optimizer.minimize(loss)"
"\n", ]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"eval\"):\n", "with tf.name_scope(\"eval\"):\n",
" correct = tf.nn.in_top_k(logits, y, 1)\n", " correct = tf.nn.in_top_k(logits, y, 1)\n",
" accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n", " accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))"
" \n", ]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()\n", "init = tf.global_variables_initializer()\n",
"saver = tf.train.Saver()" "saver = tf.train.Saver()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 21, "execution_count": 35,
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"deletable": true, "deletable": true,
@ -667,7 +828,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 36,
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"deletable": true, "deletable": true,
@ -696,16 +857,334 @@
"editable": true "editable": true
}, },
"source": [ "source": [
"**Coming soon**" "## 1. to 8."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"source": [
"See appendix A."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 9."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_Train a deep MLP on the MNIST dataset and see if you can get over 98% precision. Just like in the last exercise of chapter 9, try adding all the bells and whistles (i.e., save checkpoints, restore the last checkpoint in case of an interruption, add summaries, plot learning curves using TensorBoard, and so on)._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First let's create the deep net. It's exactly the same as earlier, with just one addition: we add a `tf.summary.scalar()` to track the loss and the accuracy during training, so we can view nice learning curves using TensorBoard."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"n_inputs = 28*28 # MNIST\n",
"n_hidden1 = 300\n",
"n_hidden2 = 100\n",
"n_outputs = 10"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n",
"y = tf.placeholder(tf.int64, shape=(None), name=\"y\") "
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"dnn\"):\n",
" hidden1 = tf.layers.dense(X, n_hidden1, name=\"hidden1\",\n",
" activation=tf.nn.relu)\n",
" hidden2 = tf.layers.dense(hidden1, n_hidden2, name=\"hidden2\",\n",
" activation=tf.nn.relu)\n",
" logits = tf.layers.dense(hidden2, n_outputs, name=\"outputs\")"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"loss\"):\n",
" xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n",
" loss = tf.reduce_mean(xentropy, name=\"loss\")\n",
" loss_summary = tf.summary.scalar('log_loss', loss)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"learning_rate = 0.01\n",
"\n",
"with tf.name_scope(\"train\"):\n",
" optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n",
" training_op = optimizer.minimize(loss)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"eval\"):\n",
" correct = tf.nn.in_top_k(logits, y, 1)\n",
" accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n",
" accuracy_summary = tf.summary.scalar('accuracy', accuracy)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()\n",
"saver = tf.train.Saver()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we need to define the directory to write the TensorBoard logs to:"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from datetime import datetime\n",
"\n",
"def log_dir(prefix=\"\"):\n",
" now = datetime.utcnow().strftime(\"%Y%m%d%H%M%S\")\n",
" root_logdir = \"tf_logs\"\n",
" if prefix:\n",
" prefix += \"-\"\n",
" name = prefix + \"run-\" + now\n",
" return \"{}/{}/\".format(root_logdir, name)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"logdir = log_dir(\"mnist_dnn\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can create the `FileWriter` that we will use to write the TensorBoard logs:"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hey! Why don't we implement early stopping? For this, we are going to need a validation set. Luckily, the dataset returned by TensorFlow's `input_data()` function (see above) is already split into a training set (60,000 instances, already shuffled for us), a validation set (5,000 instances) and a test set (5,000 instances). So we can easily define `X_valid` and `y_valid`:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_valid = mnist.validation.images\n",
"y_valid = mnist.validation.labels"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"m, n = X_train.shape"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_epochs = 10001\n",
"batch_size = 50\n",
"n_batches = int(np.ceil(m / batch_size))\n",
"\n",
"checkpoint_path = \"/tmp/my_deep_mnist_model.ckpt\"\n",
"checkpoint_epoch_path = checkpoint_path + \".epoch\"\n",
"final_model_path = \"./my_deep_mnist_model\"\n",
"\n",
"best_loss = np.infty\n",
"epochs_without_progress = 0\n",
"max_epochs_without_progress = 50\n",
"\n",
"with tf.Session() as sess:\n",
" if os.path.isfile(checkpoint_epoch_path):\n",
" # if the checkpoint file exists, restore the model and load the epoch number\n",
" with open(checkpoint_epoch_path, \"rb\") as f:\n",
" start_epoch = int(f.read())\n",
" print(\"Training was interrupted. Continuing at epoch\", start_epoch)\n",
" saver.restore(sess, checkpoint_path)\n",
" else:\n",
" start_epoch = 0\n",
" sess.run(init)\n",
"\n",
" for epoch in range(start_epoch, n_epochs):\n",
" for iteration in range(mnist.train.num_examples // batch_size):\n",
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" accuracy_val, loss_val, accuracy_summary_str, loss_summary_str = sess.run([accuracy, loss, accuracy_summary, loss_summary], feed_dict={X: X_valid, y: y_valid})\n",
" file_writer.add_summary(accuracy_summary_str, epoch)\n",
" file_writer.add_summary(loss_summary_str, epoch)\n",
" if epoch % 5 == 0:\n",
" print(\"Epoch:\", epoch,\n",
" \"\\tValidation accuracy: {:.3f}%\".format(accuracy_val * 100),\n",
" \"\\tLoss: {:.5f}\".format(loss_val))\n",
" saver.save(sess, checkpoint_path)\n",
" with open(checkpoint_epoch_path, \"wb\") as f:\n",
" f.write(b\"%d\" % (epoch + 1))\n",
" if loss_val < best_loss:\n",
" saver.save(sess, final_model_path)\n",
" best_loss = loss_val\n",
" else:\n",
" epochs_without_progress += 5\n",
" if epochs_without_progress > max_epochs_without_progress:\n",
" print(\"Early stopping\")\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"os.remove(checkpoint_epoch_path)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" saver.restore(sess, final_model_path)\n",
" accuracy_val = accuracy.eval(feed_dict={X: X_test, y: y_test})"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"accuracy_val"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {
"collapsed": true, "collapsed": true
"deletable": true,
"editable": true
}, },
"outputs": [], "outputs": [],
"source": [] "source": []