diff --git a/16_nlp_with_rnns_and_attention.ipynb b/16_nlp_with_rnns_and_attention.ipynb
index 901a069..9bbef1f 100644
--- a/16_nlp_with_rnns_and_attention.ipynb
+++ b/16_nlp_with_rnns_and_attention.ipynb
@@ -28,16 +28,6 @@
""
]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# WORK IN PROGRESS\n",
- "\n",
- "\n",
- "**I'm still working on updating this chapter to the 3rd edition. Please come back in a few weeks.**"
- ]
- },
{
"cell_type": "markdown",
"metadata": {
@@ -59,7 +49,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {
"id": "TFSU3FCOpKzu"
},
@@ -81,7 +71,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {
"id": "YqCwW7cMpKzw"
},
@@ -103,7 +93,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {
"id": "0Piq5se2pKzx"
},
@@ -125,7 +115,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {
"id": "8d4TH3NbpKzx"
},
@@ -151,7 +141,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {
"id": "PQFH5Y9PpKzy"
},
@@ -180,7 +170,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {
"id": "Ekxzo6pOpKzy"
},
@@ -199,86 +189,42 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "This notebooks uses the TensorFlow Addons library, and the Transformers library. If you're running on Colab, then we need to install them now:"
+ "# Generating Shakespearean Text Using a Character RNN"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Creating the Training Dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's download the Shakespeare data from Andrej Karpathy's [char-rnn project](https://github.com/karpathy/char-rnn/)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 7,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloading data from https://homl.info/shakespeare\n",
+ "1122304/1115394 [==============================] - 0s 0us/step\n",
+ "1130496/1115394 [==============================] - 0s 0us/step\n"
+ ]
+ }
+ ],
"source": [
- "if \"google.colab\" in sys.modules:\n",
- " %pip install -q -U tensorflow-addons\n",
- " %pip install -q -U transformers"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Char-RNN"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Splitting a sequence into batches of shuffled windows"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "For example, let's split the sequence 0 to 14 into windows of length 5, each shifted by 2 (e.g.,`[0, 1, 2, 3, 4]`, `[2, 3, 4, 5, 6]`, etc.), then shuffle them, and split them into inputs (the first 4 steps) and targets (the last 4 steps) (e.g., `[2, 3, 4, 5, 6]` would be split into `[[2, 3, 4, 5], [3, 4, 5, 6]]`), then create batches of 3 such input/target pairs:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "np.random.seed(42)\n",
- "tf.random.set_seed(42)\n",
+ "import tensorflow as tf\n",
"\n",
- "n_steps = 5\n",
- "dataset = tf.data.Dataset.from_tensor_slices(tf.range(15))\n",
- "dataset = dataset.window(n_steps, shift=2, drop_remainder=True)\n",
- "dataset = dataset.flat_map(lambda window: window.batch(n_steps))\n",
- "dataset = dataset.shuffle(10).map(lambda window: (window[:-1], window[1:]))\n",
- "dataset = dataset.batch(3).prefetch(1)\n",
- "for index, (X_batch, Y_batch) in enumerate(dataset):\n",
- " print(\"_\" * 20, \"Batch\", index, \"\\nX_batch\")\n",
- " print(X_batch.numpy())\n",
- " print(\"=\" * 5, \"\\nY_batch\")\n",
- " print(Y_batch.numpy())"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Loading the Data and Preparing the Dataset"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "shakespeare_url = \"https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\"\n",
+ "shakespeare_url = \"https://homl.info/shakespeare\" # shortcut URL\n",
"filepath = tf.keras.utils.get_file(\"shakespeare.txt\", shakespeare_url)\n",
"with open(filepath) as f:\n",
" shakespeare_text = f.read()"
@@ -286,269 +232,440 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 8,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "First Citizen:\n",
+ "Before we proceed any further, hear me speak.\n",
+ "\n",
+ "All:\n",
+ "Speak, speak.\n"
+ ]
+ }
+ ],
"source": [
- "print(shakespeare_text[:148])"
+ "# extra code – shows a short text sample\n",
+ "print(shakespeare_text[:80])"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 9,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "\"\\n !$&',-.3:;?abcdefghijklmnopqrstuvwxyz\""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
+ "# extra code – shows all 39 distinct characters (after converting to lower case)\n",
"\"\".join(sorted(set(shakespeare_text.lower())))"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
- "tokenizer = tf.keras.preprocessing.text.Tokenizer(char_level=True)\n",
- "tokenizer.fit_on_texts(shakespeare_text)"
+ "text_vec_layer = tf.keras.layers.TextVectorization(split=\"character\",\n",
+ " standardize=\"lower\")\n",
+ "text_vec_layer.adapt([shakespeare_text])\n",
+ "encoded = text_vec_layer([shakespeare_text])[0]"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
- "tokenizer.texts_to_sequences([\"First\"])"
+ "encoded -= 2 # drop tokens 0 (pad) and 1 (unknown), which we will not use\n",
+ "n_tokens = text_vec_layer.vocabulary_size() - 2 # number of distinct chars = 39\n",
+ "dataset_size = len(encoded) # total number of chars = 1,115,394"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 12,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "39"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "tokenizer.sequences_to_texts([[20, 6, 9, 8, 3]])"
+ "n_tokens"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 13,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1115394"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "max_id = len(tokenizer.word_index) # number of distinct characters\n",
- "dataset_size = tokenizer.document_count # total number of characters"
+ "dataset_size"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
- "[encoded] = np.array(tokenizer.texts_to_sequences([shakespeare_text])) - 1\n",
- "train_size = dataset_size * 90 // 100\n",
- "dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**Note**: in previous versions of this code, we used `dataset.repeat()` now to make the dataset \"infinite\", and later in the notebook we set the `steps_per_epoch` argument when calling the `model.fit()` method. This was needed to work around some TensorFlow bugs. However, since these bugs have now been fixed, we can simplify the code: no need for `dataset.repeat()` or `steps_per_epoch` anymore."
+ "def to_dataset(sequence, length, shuffle=False, seed=None, batch_size=32):\n",
+ " ds = tf.data.Dataset.from_tensor_slices(sequence)\n",
+ " ds = ds.window(length + 1, shift=1, drop_remainder=True)\n",
+ " ds = ds.flat_map(lambda window_ds: window_ds.batch(length + 1))\n",
+ " if shuffle:\n",
+ " ds = ds.shuffle(100_000, seed=seed)\n",
+ " ds = ds.batch(batch_size)\n",
+ " return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[(,\n",
+ " )]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "n_steps = 100\n",
- "window_length = n_steps + 1 # target = input shifted 1 character ahead\n",
- "dataset = dataset.window(window_length, shift=1, drop_remainder=True)"
+ "# extra code – a simple example using to_dataset()\n",
+ "# There's just one sample in this dataset: the input represents \"to b\" and the\n",
+ "# output represents \"o be\"\n",
+ "list(to_dataset(text_vec_layer([\"To be\"])[0], length=4))"
]
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset = dataset.flat_map(lambda window: window.batch(window_length))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "np.random.seed(42)\n",
- "tf.random.set_seed(42)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "batch_size = 32\n",
- "dataset = dataset.shuffle(10000).batch(batch_size)\n",
- "dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset = dataset.map(\n",
- " lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset = dataset.prefetch(1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "for X_batch, Y_batch in dataset.take(1):\n",
- " print(X_batch.shape, Y_batch.shape)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Creating and Training the Model"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**Warning**: the following code may take up to 24 hours to run, depending on your hardware. If you use a GPU, it may take just 1 or 2 hours, or less."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**Note**: the `GRU` class will only use the GPU (if you have one) when using the default values for the following arguments: `activation`, `recurrent_activation`, `recurrent_dropout`, `unroll`, `use_bias` and `reset_after`. This is why I commented out `recurrent_dropout=0.2` (compared to the book)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = tf.keras.Sequential([\n",
- " tf.keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id],\n",
- " #dropout=0.2, recurrent_dropout=0.2),\n",
- " dropout=0.2),\n",
- " tf.keras.layers.GRU(128, return_sequences=True,\n",
- " #dropout=0.2, recurrent_dropout=0.2),\n",
- " dropout=0.2),\n",
- " tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(max_id,\n",
- " activation=\"softmax\"))\n",
- "])\n",
- "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n",
- "history = model.fit(dataset, epochs=10)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Using the Model to Generate Text"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def preprocess(texts):\n",
- " X = np.array(tokenizer.texts_to_sequences(texts)) - 1\n",
- " return tf.one_hot(X, max_id)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**Warning**: the `predict_classes()` method is deprecated. Instead, we must use `model(X_new).argmax(axis=-1)`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "X_new = preprocess([\"How are yo\"])\n",
- "#Y_pred = model.predict_classes(X_new)\n",
- "Y_pred = model(X_new).argmax(axis=-1)\n",
- "tokenizer.sequences_to_texts(Y_pred + 1)[0][-1] # 1st sentence, last char"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
+ "execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
+ "length = 100\n",
"tf.random.set_seed(42)\n",
- "\n",
- "tf.random.categorical([[np.log(0.5), np.log(0.4), np.log(0.1)]], num_samples=40).numpy()"
+ "train_set = to_dataset(encoded[:1_000_000], length=length, shuffle=True,\n",
+ " seed=42)\n",
+ "valid_set = to_dataset(encoded[1_000_000:1_060_000], length=length)\n",
+ "test_set = to_dataset(encoded[1_060_000:], length=length)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Building and Training the Char-RNN Model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Warning**: the following code may one or two hours to run, depending on your GPU. Without a GPU, it may take over 24 hours. If you don't want to wait, just skip the next two code cells and run the code below to download a pretrained model."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Note**: the `GRU` class will only use cuDNN acceleration (assuming you have a GPU) when using the default values for the following arguments: `activation`, `recurrent_activation`, `recurrent_dropout`, `unroll`, `use_bias` and `reset_after`."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1407s 45ms/step - loss: 1.3873 - accuracy: 0.5754 - val_loss: 1.6155 - val_accuracy: 0.5333\n",
+ "Epoch 2/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1376s 44ms/step - loss: 1.2921 - accuracy: 0.5973 - val_loss: 1.5881 - val_accuracy: 0.5401\n",
+ "Epoch 3/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1379s 44ms/step - loss: 1.2743 - accuracy: 0.6015 - val_loss: 1.5885 - val_accuracy: 0.5407\n",
+ "Epoch 4/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1381s 44ms/step - loss: 1.2654 - accuracy: 0.6031 - val_loss: 1.5701 - val_accuracy: 0.5418\n",
+ "Epoch 5/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1379s 44ms/step - loss: 1.2594 - accuracy: 0.6045 - val_loss: 1.5674 - val_accuracy: 0.5450\n",
+ "Epoch 6/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1386s 44ms/step - loss: 1.2545 - accuracy: 0.6058 - val_loss: 1.5587 - val_accuracy: 0.5492\n",
+ "Epoch 7/10\n",
+ "31247/31247 [==============================] - 1381s 44ms/step - loss: 1.2514 - accuracy: 0.6062 - val_loss: 1.5532 - val_accuracy: 0.5460\n",
+ "Epoch 8/10\n",
+ "31247/31247 [==============================] - 1381s 44ms/step - loss: 1.2485 - accuracy: 0.6067 - val_loss: 1.5522 - val_accuracy: 0.5479\n",
+ "Epoch 9/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1382s 44ms/step - loss: 1.2460 - accuracy: 0.6073 - val_loss: 1.5521 - val_accuracy: 0.5497\n",
+ "Epoch 10/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "31247/31247 [==============================] - 1385s 44ms/step - loss: 1.2436 - accuracy: 0.6080 - val_loss: 1.5477 - val_accuracy: 0.5513\n"
+ ]
+ }
+ ],
+ "source": [
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU\n",
+ "model = tf.keras.Sequential([\n",
+ " tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16),\n",
+ " tf.keras.layers.GRU(128, return_sequences=True),\n",
+ " tf.keras.layers.Dense(n_tokens, activation=\"softmax\")\n",
+ "])\n",
+ "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "model_ckpt = tf.keras.callbacks.ModelCheckpoint(\n",
+ " \"my_shakespeare_model\", monitor=\"val_accuracy\", save_best_only=True)\n",
+ "history = model.fit(train_set, validation_data=valid_set, epochs=10,\n",
+ " callbacks=[model_ckpt])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "shakespeare_model = tf.keras.Sequential([\n",
+ " text_vec_layer,\n",
+ " tf.keras.layers.Lambda(lambda X: X - 2), # no or tokens\n",
+ " model\n",
+ "])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If you don't want to wait for training to complete, I've pretrained a model for you. The following code will download it. Uncomment the last line if you want to use it instead of the model trained above."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# extra code – downloads a pretrained model\n",
+ "url = \"https://github.com/ageron/data/raw/main/shakespeare_model.tgz\"\n",
+ "path = tf.keras.utils.get_file(\"shakespeare_model.tgz\", url, extract=True)\n",
+ "model_path = Path(path).with_name(\"shakespeare_model\")\n",
+ "#shakespeare_model = tf.keras.models.load_model(model_path)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'e'"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y_proba = shakespeare_model.predict([\"To be or not to b\"])[0, -1]\n",
+ "y_pred = tf.argmax(y_proba) # choose the most probable character ID\n",
+ "text_vec_layer.get_vocabulary()[y_pred + 2]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Generating Fake Shakespearean Text"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "log_probas = tf.math.log([[0.5, 0.4, 0.1]]) # probas = 50%, 40%, and 10%\n",
+ "tf.random.set_seed(42)\n",
+ "tf.random.categorical(log_probas, num_samples=8) # draw 8 samples"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"def next_char(text, temperature=1):\n",
- " X_new = preprocess([text])\n",
- " y_proba = model(X_new)[0, -1:, :]\n",
+ " y_proba = shakespeare_model.predict([text])[0, -1:]\n",
" rescaled_logits = tf.math.log(y_proba) / temperature\n",
- " char_id = tf.random.categorical(rescaled_logits, num_samples=1) + 1\n",
- " return tokenizer.sequences_to_texts(char_id.numpy())[0]"
+ " char_id = tf.random.categorical(rescaled_logits, num_samples=1)[0, 0]\n",
+ " return text_vec_layer.get_vocabulary()[char_id + 2]"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
- "tf.random.set_seed(42)\n",
- "\n",
- "next_char(\"How are yo\", temperature=1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def complete_text(text, n_chars=50, temperature=1):\n",
+ "def extend_text(text, n_chars=50, temperature=1):\n",
" for _ in range(n_chars):\n",
" text += next_char(text, temperature)\n",
" return text"
@@ -556,31 +673,68 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
- "tf.random.set_seed(42)\n",
- "\n",
- "print(complete_text(\"t\", temperature=0.2))"
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 25,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "To be or not to be the duke\n",
+ "as it is a proper strange death,\n",
+ "and the\n"
+ ]
+ }
+ ],
"source": [
- "print(complete_text(\"t\", temperature=1))"
+ "print(extend_text(\"To be or not to be\", temperature=0.01))"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 26,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "To be or not to behold?\n",
+ "\n",
+ "second push:\n",
+ "gremio, lord all, a sistermen,\n"
+ ]
+ }
+ ],
"source": [
- "print(complete_text(\"t\", temperature=2))"
+ "print(extend_text(\"To be or not to be\", temperature=1))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "To be or not to bef ,mt'&o3fpadm!$\n",
+ "wh!nse?bws3est--vgerdjw?c-y-ewznq\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(extend_text(\"To be or not to be\", temperature=100))"
]
},
{
@@ -592,79 +746,124 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
- "tf.random.set_seed(42)"
+ "def to_dataset_for_stateful_rnn(sequence, length):\n",
+ " ds = tf.data.Dataset.from_tensor_slices(sequence)\n",
+ " ds = ds.window(length + 1, shift=length, drop_remainder=True)\n",
+ " ds = ds.flat_map(lambda window: window.batch(length + 1)).batch(1)\n",
+ " return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)\n",
+ "\n",
+ "stateful_train_set = to_dataset_for_stateful_rnn(encoded[:1_000_000], length)\n",
+ "stateful_valid_set = to_dataset_for_stateful_rnn(encoded[:1_000_000], length)\n",
+ "stateful_test_set = to_dataset_for_stateful_rnn(encoded[1_060_000:], length)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 29,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[(,\n",
+ " ),\n",
+ " (,\n",
+ " ),\n",
+ " (,\n",
+ " )]"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])\n",
- "dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)\n",
- "dataset = dataset.flat_map(lambda window: window.batch(window_length))\n",
- "dataset = dataset.batch(1)\n",
- "dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))\n",
- "dataset = dataset.map(\n",
- " lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))\n",
- "dataset = dataset.prefetch(1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "batch_size = 32\n",
- "encoded_parts = np.array_split(encoded[:train_size], batch_size)\n",
- "datasets = []\n",
- "for encoded_part in encoded_parts:\n",
- " dataset = tf.data.Dataset.from_tensor_slices(encoded_part)\n",
- " dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)\n",
- " dataset = dataset.flat_map(lambda window: window.batch(window_length))\n",
- " datasets.append(dataset)\n",
- "dataset = tf.data.Dataset.zip(tuple(datasets)).map(lambda *windows: tf.stack(windows))\n",
- "dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))\n",
- "dataset = dataset.map(\n",
- " lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))\n",
- "dataset = dataset.prefetch(1)"
+ "# extra code – simple example using to_dataset_for_stateful_rnn()\n",
+ "list(to_dataset_for_stateful_rnn(tf.range(10), 3))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "**Note**: once again, I commented out `recurrent_dropout=0.2` (compared to the book) so you can get GPU acceleration (if you have one)."
+ "If you'd like to have more than one window per batch, you can use the `to_batched_dataset_for_stateful_rnn()` function instead of `to_dataset_for_stateful_rnn()`:"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[(,\n",
+ " ),\n",
+ " (,\n",
+ " ),\n",
+ " (,\n",
+ " )]"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# extra code – shows one way to prepare a batched dataset for a stateful RNN\n",
+ "\n",
+ "import numpy as np\n",
+ "\n",
+ "def to_non_overlapping_windows(sequence, length):\n",
+ " ds = tf.data.Dataset.from_tensor_slices(sequence)\n",
+ " ds = ds.window(length + 1, shift=length, drop_remainder=True)\n",
+ " return ds.flat_map(lambda window: window.batch(length + 1))\n",
+ "\n",
+ "def to_batched_dataset_for_stateful_rnn(sequence, length, batch_size=32):\n",
+ " parts = np.array_split(sequence, batch_size)\n",
+ " datasets = tuple(to_non_overlapping_windows(part, length) for part in parts)\n",
+ " ds = tf.data.Dataset.zip(datasets).map(lambda *windows: tf.stack(windows))\n",
+ " return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)\n",
+ "\n",
+ "list(to_batched_dataset_for_stateful_rnn(tf.range(20), length=3, batch_size=2))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU\n",
"model = tf.keras.Sequential([\n",
- " tf.keras.layers.GRU(128, return_sequences=True, stateful=True,\n",
- " #dropout=0.2, recurrent_dropout=0.2,\n",
- " dropout=0.2,\n",
- " batch_input_shape=[batch_size, None, max_id]),\n",
- " tf.keras.layers.GRU(128, return_sequences=True, stateful=True,\n",
- " #dropout=0.2, recurrent_dropout=0.2),\n",
- " dropout=0.2),\n",
- " tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(max_id,\n",
- " activation=\"softmax\"))\n",
+ " tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16,\n",
+ " batch_input_shape=[1, None]),\n",
+ " tf.keras.layers.GRU(128, return_sequences=True, stateful=True),\n",
+ " tf.keras.layers.Dense(n_tokens, activation=\"softmax\")\n",
"])"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
@@ -675,33 +874,197 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
- "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n",
- "history = model.fit(dataset, epochs=50,\n",
- " callbacks=[ResetStatesCallback()])"
+ "# extra code – use a different directory to save the checkpoints\n",
+ "model_ckpt = tf.keras.callbacks.ModelCheckpoint(\n",
+ " \"my_stateful_shakespeare_model\",\n",
+ " monitor=\"val_accuracy\",\n",
+ " save_best_only=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "To use the model with different batch sizes, we need to create a stateless copy. We can get rid of dropout since it is only used during training:"
+ "**Warning**: the following cell will take a while to run (possibly an hour if you are not using a GPU)."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 213s 21ms/step - loss: 1.8690 - accuracy: 0.4494 - val_loss: 1.7632 - val_accuracy: 0.4672\n",
+ "Epoch 2/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 211s 21ms/step - loss: 1.5635 - accuracy: 0.5284 - val_loss: 1.6334 - val_accuracy: 0.4994\n",
+ "Epoch 3/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 209s 21ms/step - loss: 1.4875 - accuracy: 0.5478 - val_loss: 1.5788 - val_accuracy: 0.5153\n",
+ "Epoch 4/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 208s 21ms/step - loss: 1.4483 - accuracy: 0.5579 - val_loss: 1.5471 - val_accuracy: 0.5236\n",
+ "Epoch 5/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 213s 21ms/step - loss: 1.4241 - accuracy: 0.5643 - val_loss: 1.5270 - val_accuracy: 0.5286\n",
+ "Epoch 6/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 215s 21ms/step - loss: 1.4074 - accuracy: 0.5686 - val_loss: 1.5109 - val_accuracy: 0.5338\n",
+ "Epoch 7/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 210s 21ms/step - loss: 1.3953 - accuracy: 0.5714 - val_loss: 1.5008 - val_accuracy: 0.5361\n",
+ "Epoch 8/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 212s 21ms/step - loss: 1.3863 - accuracy: 0.5737 - val_loss: 1.4938 - val_accuracy: 0.5381\n",
+ "Epoch 9/10\n",
+ "9999/9999 [==============================] - 207s 21ms/step - loss: 1.3790 - accuracy: 0.5757 - val_loss: 1.4890 - val_accuracy: 0.5380\n",
+ "Epoch 10/10\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:tensorflow:Assets written to: my_stateful_shakespeare_model/assets\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9999/9999 [==============================] - 208s 21ms/step - loss: 1.3729 - accuracy: 0.5770 - val_loss: 1.4786 - val_accuracy: 0.5420\n"
+ ]
+ }
+ ],
+ "source": [
+ "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "history = model.fit(stateful_train_set, validation_data=stateful_valid_set,\n",
+ " epochs=10, callbacks=[ResetStatesCallback(), model_ckpt])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Extra Material: converting the stateful RNN to a stateless RNN and using it**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To use the model with different batch sizes, we need to create a stateless copy:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"stateless_model = tf.keras.Sequential([\n",
- " tf.keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id]),\n",
+ " tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16),\n",
" tf.keras.layers.GRU(128, return_sequences=True),\n",
- " tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(max_id,\n",
- " activation=\"softmax\"))\n",
+ " tf.keras.layers.Dense(n_tokens, activation=\"softmax\")\n",
"])"
]
},
@@ -714,32 +1077,53 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
- "stateless_model.build(tf.TensorShape([None, None, max_id]))"
+ "stateless_model.build(tf.TensorShape([None, None]))"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
- "stateless_model.set_weights(model.get_weights())\n",
- "model = stateless_model"
+ "stateless_model.set_weights(model.get_weights())"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 38,
"metadata": {},
"outputs": [],
+ "source": [
+ "shakespeare_model = tf.keras.Sequential([\n",
+ " text_vec_layer,\n",
+ " tf.keras.layers.Lambda(lambda X: X - 2), # no or tokens\n",
+ " stateless_model\n",
+ "])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "to be or not to be so in the world and the strangeness\n",
+ "to see the wo\n"
+ ]
+ }
+ ],
"source": [
"tf.random.set_seed(42)\n",
"\n",
- "print(complete_text(\"t\"))"
+ "print(extend_text(\"to be or not to be\", temperature=0.01))"
]
},
{
@@ -751,243 +1135,286 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[1mDownloading and preparing dataset 80.23 MiB (download: 80.23 MiB, generated: Unknown size, total: 80.23 MiB) to /home/ageron/tensorflow_datasets/imdb_reviews/plain_text/1.0.0...\u001b[0m\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "055c0f544ac349d9a14da8f843651df0",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Dl Completed...: 0 url [00:00, ? url/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "e2abc244f4844d56919979b33cc2fa79",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Dl Size...: 0 MiB [00:00, ? MiB/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "af507eed124c4ff6900538205b1b00fd",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating splits...: 0%| | 0/3 [00:00, ? splits/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "18cd596aa97b46f1aa3f93d0c29edd59",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating train examples...: 0%| | 0/25000 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7c623038199e46909b7a8b0a39cecbab",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Shuffling /home/ageron/tensorflow_datasets/imdb_reviews/plain_text/1.0.0.incomplete0WPKUH/imdb_reviews-train.t…"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "b2c0a46cc37b4eb6b9feb67d715d7022",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating test examples...: 0%| | 0/25000 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "4abb656c416049c085e0f2f761d5bf9c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Shuffling /home/ageron/tensorflow_datasets/imdb_reviews/plain_text/1.0.0.incomplete0WPKUH/imdb_reviews-test.tf…"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "edb7ceb384634b8ebd766e55ba21c5d4",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Generating unsupervised examples...: 0%| | 0/50000 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "ad80e1205d5e4914840999fcd3ae3b88",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Shuffling /home/ageron/tensorflow_datasets/imdb_reviews/plain_text/1.0.0.incomplete0WPKUH/imdb_reviews-unsuper…"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[1mDataset imdb_reviews downloaded and prepared to /home/ageron/tensorflow_datasets/imdb_reviews/plain_text/1.0.0. Subsequent calls will reuse this data.\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "import tensorflow_datasets as tfds\n",
+ "\n",
+ "raw_train_set, raw_valid_set, raw_test_set = tfds.load(\n",
+ " name=\"imdb_reviews\",\n",
+ " split=[\"train[:90%]\", \"train[90%:]\", \"test\"],\n",
+ " as_supervised=True\n",
+ ")\n",
+ "tf.random.set_seed(42)\n",
+ "train_set = raw_train_set.shuffle(5000, seed=42).batch(32).prefetch(1)\n",
+ "valid_set = raw_valid_set.batch(32).prefetch(1)\n",
+ "test_set = raw_test_set.batch(32).prefetch(1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "This was an absolutely terrible movie. Don't be lured in by Christopher Walken or Michael Ironside. Both are great actors, but this must simply be their worst role in history. Even their great acting ...\n",
+ "Label: 0\n",
+ "I have been known to fall asleep during films, but this is usually due to a combination of things including, really tired, being warm and comfortable on the sette and having just eaten a lot. However ...\n",
+ "Label: 0\n",
+ "Mann photographs the Alberta Rocky Mountains in a superb fashion, and Jimmy Stewart and Walter Brennan give enjoyable performances as they always seem to do.
But come on Hollywood - a Moun ...\n",
+ "Label: 0\n",
+ "This is the kind of film for a snowy Sunday afternoon when the rest of the world can go ahead with its own business as you descend into a big arm-chair and mellow for a couple of hours. Wonderful perf ...\n",
+ "Label: 1\n"
+ ]
+ }
+ ],
+ "source": [
+ "for review, label in raw_train_set.take(4):\n",
+ " print(review.numpy().decode(\"utf-8\")[:200], \"...\")\n",
+ " print(\"Label:\", label.numpy())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
- "tf.random.set_seed(42)"
+ "vocab_size = 1000\n",
+ "text_vec_layer = tf.keras.layers.TextVectorization(max_tokens=vocab_size)\n",
+ "text_vec_layer.adapt(train_set.map(lambda reviews, labels: reviews))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "You can load the IMDB dataset easily:"
+ "**Warning**: the following cell will take a few minutes to run and the model will probably not learn anything because we didn't mask the padding tokens (that's the point of the next section)."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 43,
"metadata": {},
- "outputs": [],
- "source": [
- "(X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "X_train[0][:10]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "word_index = tf.keras.datasets.imdb.get_word_index()\n",
- "id_to_word = {id_ + 3: word for word, id_ in word_index.items()}\n",
- "for id_, token in enumerate((\"\", \"\", \"\")):\n",
- " id_to_word[id_] = token\n",
- "\" \".join([id_to_word[id_] for id_ in X_train[0][:10]])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import tensorflow_datasets as tfds\n",
- "\n",
- "datasets, info = tfds.load(\"imdb_reviews\", as_supervised=True, with_info=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "datasets.keys()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "train_size = info.splits[\"train\"].num_examples\n",
- "test_size = info.splits[\"test\"].num_examples"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "train_size, test_size"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "for X_batch, y_batch in datasets[\"train\"].batch(2).take(1):\n",
- " for review, label in zip(X_batch.numpy(), y_batch.numpy()):\n",
- " print(\"Review:\", review.decode(\"utf-8\")[:200], \"...\")\n",
- " print(\"Label:\", label, \"= Positive\" if label else \"= Negative\")\n",
- " print()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def preprocess(X_batch, y_batch):\n",
- " X_batch = tf.strings.substr(X_batch, 0, 300)\n",
- " X_batch = tf.strings.regex_replace(X_batch, rb\"
\", b\" \")\n",
- " X_batch = tf.strings.regex_replace(X_batch, b\"[^a-zA-Z']\", b\" \")\n",
- " X_batch = tf.strings.split(X_batch)\n",
- " return X_batch.to_tensor(default_value=b\"\"), y_batch"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "preprocess(X_batch, y_batch)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from collections import Counter\n",
- "\n",
- "vocabulary = Counter()\n",
- "for X_batch, y_batch in datasets[\"train\"].batch(32).map(preprocess):\n",
- " for review in X_batch:\n",
- " vocabulary.update(list(review.numpy()))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "vocabulary.most_common()[:3]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "len(vocabulary)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "vocab_size = 10000\n",
- "truncated_vocabulary = [\n",
- " word for word, count in vocabulary.most_common()[:vocab_size]]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "word_to_id = {word: index for index, word in enumerate(truncated_vocabulary)}\n",
- "for word in b\"This movie was faaaaaantastic\".split():\n",
- " print(word_to_id.get(word) or vocab_size)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "words = tf.constant(truncated_vocabulary)\n",
- "word_ids = tf.range(len(truncated_vocabulary), dtype=tf.int64)\n",
- "vocab_init = tf.lookup.KeyValueTensorInitializer(words, word_ids)\n",
- "num_oov_buckets = 1000\n",
- "table = tf.lookup.StaticVocabularyTable(vocab_init, num_oov_buckets)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "table.lookup(tf.constant([b\"This movie was faaaaaantastic\".split()]))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def encode_words(X_batch, y_batch):\n",
- " return table.lookup(X_batch), y_batch\n",
- "\n",
- "train_set = datasets[\"train\"].batch(32).map(preprocess)\n",
- "train_set = train_set.map(encode_words).prefetch(1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "for X_batch, y_batch in train_set.take(1):\n",
- " print(X_batch)\n",
- " print(y_batch)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/2\n",
+ "704/704 [==============================] - 255s 359ms/step - loss: 0.6934 - accuracy: 0.4990 - val_loss: 0.6931 - val_accuracy: 0.5016\n",
+ "Epoch 2/2\n",
+ "704/704 [==============================] - 250s 355ms/step - loss: 0.6934 - accuracy: 0.5042 - val_loss: 0.6942 - val_accuracy: 0.5008\n"
+ ]
+ }
+ ],
"source": [
"embed_size = 128\n",
+ "tf.random.set_seed(42)\n",
"model = tf.keras.Sequential([\n",
- " tf.keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size,\n",
- " mask_zero=True, # not shown in the book\n",
- " input_shape=[None]),\n",
- " tf.keras.layers.GRU(128, return_sequences=True),\n",
+ " text_vec_layer,\n",
+ " tf.keras.layers.Embedding(vocab_size, embed_size),\n",
" tf.keras.layers.GRU(128),\n",
" tf.keras.layers.Dense(1, activation=\"sigmoid\")\n",
"])\n",
- "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
- "history = model.fit(train_set, epochs=5)"
+ "model.compile(loss=\"binary_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "history = model.fit(train_set, validation_data=valid_set, epochs=2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Masking"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Warning**: the following cell will take a while to run (possibly 30 minutes if you are not using a GPU)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/5\n",
+ "704/704 [==============================] - 303s 426ms/step - loss: 0.5296 - accuracy: 0.7234 - val_loss: 0.4045 - val_accuracy: 0.8244\n",
+ "Epoch 2/5\n",
+ "704/704 [==============================] - 295s 419ms/step - loss: 0.3702 - accuracy: 0.8418 - val_loss: 0.3390 - val_accuracy: 0.8532\n",
+ "Epoch 3/5\n",
+ "704/704 [==============================] - 298s 423ms/step - loss: 0.3057 - accuracy: 0.8747 - val_loss: 0.3196 - val_accuracy: 0.8696\n",
+ "Epoch 4/5\n",
+ "704/704 [==============================] - 294s 418ms/step - loss: 0.2784 - accuracy: 0.8871 - val_loss: 0.3162 - val_accuracy: 0.8596\n",
+ "Epoch 5/5\n",
+ "704/704 [==============================] - 293s 417ms/step - loss: 0.2597 - accuracy: 0.8961 - val_loss: 0.3209 - val_accuracy: 0.8548\n"
+ ]
+ }
+ ],
+ "source": [
+ "embed_size = 128\n",
+ "tf.random.set_seed(42)\n",
+ "model = tf.keras.Sequential([\n",
+ " text_vec_layer,\n",
+ " tf.keras.layers.Embedding(vocab_size, embed_size, mask_zero=True),\n",
+ " tf.keras.layers.GRU(128),\n",
+ " tf.keras.layers.Dense(1, activation=\"sigmoid\")\n",
+ "])\n",
+ "model.compile(loss=\"binary_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "history = model.fit(train_set, validation_data=valid_set, epochs=5)"
]
},
{
@@ -999,405 +1426,1497 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
- "K = tf.keras.backend\n",
- "embed_size = 128\n",
- "inputs = tf.keras.layers.Input(shape=[None])\n",
- "mask = tf.keras.layers.Lambda(lambda inputs: K.not_equal(inputs, 0))(inputs)\n",
- "z = tf.keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size)(inputs)\n",
- "z = tf.keras.layers.GRU(128, return_sequences=True)(z, mask=mask)\n",
- "z = tf.keras.layers.GRU(128)(z, mask=mask)\n",
- "outputs = tf.keras.layers.Dense(1, activation=\"sigmoid\")(z)\n",
- "model = tf.keras.Model(inputs=[inputs], outputs=[outputs])\n",
- "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
- "history = model.fit(train_set, epochs=5)"
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on the CPU\n",
+ "inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)\n",
+ "token_ids = text_vec_layer(inputs)\n",
+ "mask = tf.math.not_equal(token_ids, 0)\n",
+ "Z = tf.keras.layers.Embedding(vocab_size, embed_size)(token_ids)\n",
+ "Z = tf.keras.layers.GRU(128, dropout=0.2)(Z, mask=mask)\n",
+ "outputs = tf.keras.layers.Dense(1, activation=\"sigmoid\")(Z)\n",
+ "model = tf.keras.Model(inputs=[inputs], outputs=[outputs])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Reusing Pretrained Embeddings"
+ "**Warning**: the following cell will take a while to run (possibly 30 minutes if you are not using a GPU)."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 46,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/5\n",
+ "704/704 [==============================] - 303s 427ms/step - loss: 0.5447 - accuracy: 0.7198 - val_loss: 0.4604 - val_accuracy: 0.7720\n",
+ "Epoch 2/5\n",
+ "704/704 [==============================] - 301s 427ms/step - loss: 0.3469 - accuracy: 0.8512 - val_loss: 0.3214 - val_accuracy: 0.8608\n",
+ "Epoch 3/5\n",
+ "704/704 [==============================] - 295s 419ms/step - loss: 0.3054 - accuracy: 0.8713 - val_loss: 0.3069 - val_accuracy: 0.8672\n",
+ "Epoch 4/5\n",
+ "704/704 [==============================] - 295s 420ms/step - loss: 0.2798 - accuracy: 0.8828 - val_loss: 0.3028 - val_accuracy: 0.8672\n",
+ "Epoch 5/5\n",
+ "704/704 [==============================] - 298s 423ms/step - loss: 0.2622 - accuracy: 0.8920 - val_loss: 0.2953 - val_accuracy: 0.8700\n"
+ ]
+ }
+ ],
"source": [
- "tf.random.set_seed(42)"
+ "# extra code – compiles and trains the model, as usual\n",
+ "model.compile(loss=\"binary_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "history = model.fit(train_set, validation_data=valid_set, epochs=5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Extra material: using ragged tensors**"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 47,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "tfhub_cache_dir = Path() / \"my_tfhub_cache\"\n",
- "os.environ[\"TFHUB_CACHE_DIR\"] = str(tfhub_cache_dir)"
+ "text_vec_layer_ragged = tf.keras.layers.TextVectorization(\n",
+ " max_tokens=vocab_size, ragged=True)\n",
+ "text_vec_layer_ragged.adapt(train_set.map(lambda reviews, labels: reviews))\n",
+ "text_vec_layer_ragged([\"Great movie!\", \"This is DiCaprio's best role.\"])"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 48,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "import tensorflow_hub as hub\n",
- "\n",
+ "text_vec_layer([\"Great movie!\", \"This is DiCaprio's best role.\"])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Warning**: the following cell will take a while to run (possibly 30 minutes if you are not using a GPU)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/5\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "704/704 [==============================] - 280s 395ms/step - loss: 0.5038 - accuracy: 0.7496 - val_loss: 0.6706 - val_accuracy: 0.6752\n",
+ "Epoch 2/5\n",
+ "704/704 [==============================] - 277s 393ms/step - loss: 0.4499 - accuracy: 0.7892 - val_loss: 0.3494 - val_accuracy: 0.8500\n",
+ "Epoch 3/5\n",
+ "704/704 [==============================] - 276s 392ms/step - loss: 0.3270 - accuracy: 0.8592 - val_loss: 0.3855 - val_accuracy: 0.8260\n",
+ "Epoch 4/5\n",
+ "704/704 [==============================] - 277s 394ms/step - loss: 0.2935 - accuracy: 0.8760 - val_loss: 0.3401 - val_accuracy: 0.8520\n",
+ "Epoch 5/5\n",
+ "704/704 [==============================] - 275s 390ms/step - loss: 0.2742 - accuracy: 0.8854 - val_loss: 0.3971 - val_accuracy: 0.8208\n"
+ ]
+ }
+ ],
+ "source": [
+ "embed_size = 128\n",
+ "tf.random.set_seed(42)\n",
"model = tf.keras.Sequential([\n",
- " hub.KerasLayer(\"https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1\",\n",
- " dtype=tf.string, input_shape=[], output_shape=[50]),\n",
- " tf.keras.layers.Dense(128, activation=\"relu\"),\n",
+ " text_vec_layer_ragged,\n",
+ " tf.keras.layers.Embedding(vocab_size, embed_size),\n",
+ " tf.keras.layers.GRU(128),\n",
" tf.keras.layers.Dense(1, activation=\"sigmoid\")\n",
"])\n",
- "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\",\n",
- " metrics=[\"accuracy\"])"
+ "model.compile(loss=\"binary_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "history = model.fit(train_set, validation_data=valid_set, epochs=5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Let's define a `tree()` function to view the structure of the cache directory TF Hub just created:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "def tree(path, level=0, indent=4):\n",
- " if level == 0:\n",
- " print(f\"{path}/\")\n",
- " level += 1\n",
- " sub_paths = sorted(path.iterdir())\n",
- " sub_dirs = [sub_path for sub_path in sub_paths if sub_path.is_dir()]\n",
- " filepaths = [sub_path for sub_path in sub_paths if not sub_path in sub_dirs]\n",
- " indent_str = \" \" * indent * level\n",
- " for sub_dir in sub_dirs:\n",
- " print(f\"{indent_str}{sub_dir.name}/\")\n",
- " tree(sub_dir, level + 1, indent)\n",
- " for filepath in filepaths:\n",
- " print(f\"{indent_str}{filepath.name}\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "tree(tfhub_cache_dir)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import tensorflow_datasets as tfds\n",
- "\n",
- "datasets, info = tfds.load(\"imdb_reviews\", as_supervised=True, with_info=True)\n",
- "train_size = info.splits[\"train\"].num_examples\n",
- "batch_size = 32\n",
- "train_set = datasets[\"train\"].batch(batch_size).prefetch(1)\n",
- "history = model.fit(train_set, epochs=5)"
+ "## Reusing Pretrained Embeddings and Language Models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Automatic Translation"
+ "**Warning**: the following cell will take a while to run (possibly an hour if you are not using a GPU)."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 50,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/10\n",
+ "704/704 [==============================] - 224s 303ms/step - loss: 0.3141 - accuracy: 0.8648 - val_loss: 0.2397 - val_accuracy: 0.9008\n",
+ "Epoch 2/10\n",
+ "704/704 [==============================] - 205s 291ms/step - loss: 0.0489 - accuracy: 0.9852 - val_loss: 0.3257 - val_accuracy: 0.8936\n",
+ "Epoch 3/10\n",
+ "704/704 [==============================] - 204s 290ms/step - loss: 0.0061 - accuracy: 0.9988 - val_loss: 0.3963 - val_accuracy: 0.8944\n",
+ "Epoch 4/10\n",
+ "704/704 [==============================] - 204s 290ms/step - loss: 9.4918e-04 - accuracy: 0.9999 - val_loss: 0.4291 - val_accuracy: 0.8924\n",
+ "Epoch 5/10\n",
+ "704/704 [==============================] - 203s 289ms/step - loss: 5.1920e-04 - accuracy: 1.0000 - val_loss: 0.4691 - val_accuracy: 0.8932\n",
+ "Epoch 6/10\n",
+ "704/704 [==============================] - 204s 289ms/step - loss: 5.0053e-04 - accuracy: 1.0000 - val_loss: 0.4687 - val_accuracy: 0.8912\n",
+ "Epoch 7/10\n",
+ "704/704 [==============================] - 208s 296ms/step - loss: 3.7360e-04 - accuracy: 1.0000 - val_loss: 0.5034 - val_accuracy: 0.8984\n",
+ "Epoch 8/10\n",
+ "704/704 [==============================] - 209s 297ms/step - loss: 2.3907e-05 - accuracy: 1.0000 - val_loss: 0.5773 - val_accuracy: 0.8924\n",
+ "Epoch 9/10\n",
+ "704/704 [==============================] - 204s 290ms/step - loss: 9.0970e-06 - accuracy: 1.0000 - val_loss: 0.6163 - val_accuracy: 0.8972\n",
+ "Epoch 10/10\n",
+ "704/704 [==============================] - 205s 291ms/step - loss: 5.2528e-06 - accuracy: 1.0000 - val_loss: 0.6455 - val_accuracy: 0.8956\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "tf.random.set_seed(42)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "vocab_size = 100\n",
- "embed_size = 10"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import tensorflow_addons as tfa\n",
+ "import os\n",
+ "import tensorflow_hub as hub\n",
"\n",
- "encoder_inputs = tf.keras.layers.Input(shape=[None], dtype=np.int32)\n",
- "decoder_inputs = tf.keras.layers.Input(shape=[None], dtype=np.int32)\n",
- "sequence_lengths = tf.keras.layers.Input(shape=[], dtype=np.int32)\n",
- "\n",
- "embeddings = tf.keras.layers.Embedding(vocab_size, embed_size)\n",
- "encoder_embeddings = embeddings(encoder_inputs)\n",
- "decoder_embeddings = embeddings(decoder_inputs)\n",
- "\n",
- "encoder = tf.keras.layers.LSTM(512, return_state=True)\n",
- "encoder_outputs, state_h, state_c = encoder(encoder_embeddings)\n",
- "encoder_state = [state_h, state_c]\n",
- "\n",
- "sampler = tfa.seq2seq.sampler.TrainingSampler()\n",
- "\n",
- "decoder_cell = tf.keras.layers.LSTMCell(512)\n",
- "output_layer = tf.keras.layers.Dense(vocab_size)\n",
- "decoder = tfa.seq2seq.basic_decoder.BasicDecoder(decoder_cell, sampler,\n",
- " output_layer=output_layer)\n",
- "final_outputs, final_state, final_sequence_lengths = decoder(\n",
- " decoder_embeddings, initial_state=encoder_state,\n",
- " sequence_length=sequence_lengths)\n",
- "Y_proba = tf.nn.softmax(final_outputs.rnn_output)\n",
- "\n",
- "model = tf.keras.Model(\n",
- " inputs=[encoder_inputs, decoder_inputs, sequence_lengths],\n",
- " outputs=[Y_proba])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "X = np.random.randint(100, size=1000 * 10).reshape(1000, 10)\n",
- "Y = np.random.randint(100, size=1000 * 15).reshape(1000, 15)\n",
- "X_decoder = np.c_[np.zeros((1000, 1)), Y[:, :-1]]\n",
- "seq_lengths = np.full([1000], 10)\n",
- "\n",
- "history = model.fit([X, X_decoder, seq_lengths], Y, epochs=2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Bidirectional Recurrent Layers"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
+ "os.environ[\"TFHUB_CACHE_DIR\"] = \"my_tfhub_cache\"\n",
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU\n",
"model = tf.keras.Sequential([\n",
- " tf.keras.layers.GRU(10, return_sequences=True, input_shape=[None, 10]),\n",
- " tf.keras.layers.Bidirectional(tf.keras.layers.GRU(10, return_sequences=True))\n",
+ " hub.KerasLayer(\"https://tfhub.dev/google/universal-sentence-encoder/4\",\n",
+ " trainable=True, dtype=tf.string, input_shape=[]),\n",
+ " tf.keras.layers.Dense(64, activation=\"relu\"),\n",
+ " tf.keras.layers.Dense(1, activation=\"sigmoid\")\n",
"])\n",
- "\n",
- "model.summary()"
+ "model.compile(loss=\"binary_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "model.fit(train_set, validation_data=valid_set, epochs=10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Positional Encoding"
+ "# An Encoder–Decoder Network for Neural Machine Translation"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "url = \"https://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip\"\n",
+ "path = tf.keras.utils.get_file(\"spa-eng.zip\", origin=url, cache_dir=\"datasets\",\n",
+ " extract=True)\n",
+ "text = (Path(path).with_name(\"spa-eng\") / \"spa.txt\").read_text()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "text = text.replace(\"¡\", \"\").replace(\"¿\", \"\")\n",
+ "pairs = [line.split(\"\\t\") for line in text.splitlines()]\n",
+ "np.random.seed(42) # extra code – ensures reproducibility on CPU\n",
+ "np.random.shuffle(pairs)\n",
+ "sentences_en, sentences_es = zip(*pairs) # separates the pairs into 2 lists"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "How boring! => Qué aburrimiento!\n",
+ "I love sports. => Adoro el deporte.\n",
+ "Would you like to swap jobs? => Te gustaría que intercambiemos los trabajos?\n"
+ ]
+ }
+ ],
+ "source": [
+ "for i in range(3):\n",
+ " print(sentences_en[i], \"=>\", sentences_es[i])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "vocab_size = 1000\n",
+ "max_length = 50\n",
+ "text_vec_layer_en = tf.keras.layers.TextVectorization(\n",
+ " vocab_size, output_sequence_length=max_length)\n",
+ "text_vec_layer_es = tf.keras.layers.TextVectorization(\n",
+ " vocab_size, output_sequence_length=max_length)\n",
+ "text_vec_layer_en.adapt(sentences_en)\n",
+ "text_vec_layer_es.adapt([f\"startofseq {s} endofseq\" for s in sentences_es])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['', '[UNK]', 'the', 'i', 'to', 'you', 'tom', 'a', 'is', 'he']"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "text_vec_layer_en.get_vocabulary()[:10]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['', '[UNK]', 'startofseq', 'endofseq', 'de', 'que', 'a', 'no', 'tom', 'la']"
+ ]
+ },
+ "execution_count": 56,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "text_vec_layer_es.get_vocabulary()[:10]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X_train = tf.constant(sentences_en[:100_000])\n",
+ "X_valid = tf.constant(sentences_en[100_000:])\n",
+ "X_train_dec = tf.constant([f\"startofseq {s}\" for s in sentences_es[:100_000]])\n",
+ "X_valid_dec = tf.constant([f\"startofseq {s}\" for s in sentences_es[100_000:]])\n",
+ "Y_train = text_vec_layer_es([f\"{s} endofseq\" for s in sentences_es[:100_000]])\n",
+ "Y_valid = text_vec_layer_es([f\"{s} endofseq\" for s in sentences_es[100_000:]])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU\n",
+ "encoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)\n",
+ "decoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "embed_size = 128\n",
+ "encoder_input_ids = text_vec_layer_en(encoder_inputs)\n",
+ "decoder_input_ids = text_vec_layer_es(decoder_inputs)\n",
+ "encoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,\n",
+ " mask_zero=True)\n",
+ "decoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,\n",
+ " mask_zero=True)\n",
+ "encoder_embeddings = encoder_embedding_layer(encoder_input_ids)\n",
+ "decoder_embeddings = decoder_embedding_layer(decoder_input_ids)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "encoder = tf.keras.layers.LSTM(512, return_state=True)\n",
+ "encoder_outputs, *encoder_state = encoder(encoder_embeddings)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "decoder = tf.keras.layers.LSTM(512, return_sequences=True)\n",
+ "decoder_outputs = decoder(decoder_embeddings, initial_state=encoder_state)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "output_layer = tf.keras.layers.Dense(vocab_size, activation=\"softmax\")\n",
+ "Y_proba = output_layer(decoder_outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Warning**: the following cell will take a while to run (possibly a couple hours if you are not using a GPU)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/10\n",
+ "3125/3125 [==============================] - 698s 221ms/step - loss: 0.4154 - accuracy: 0.4256 - val_loss: 0.3069 - val_accuracy: 0.5246\n",
+ "Epoch 2/10\n",
+ "3125/3125 [==============================] - 686s 219ms/step - loss: 0.2631 - accuracy: 0.5745 - val_loss: 0.2367 - val_accuracy: 0.6055\n",
+ "Epoch 3/10\n",
+ "3125/3125 [==============================] - 686s 220ms/step - loss: 0.2066 - accuracy: 0.6457 - val_loss: 0.2061 - val_accuracy: 0.6500\n",
+ "Epoch 4/10\n",
+ "3125/3125 [==============================] - 682s 218ms/step - loss: 0.1740 - accuracy: 0.6907 - val_loss: 0.1920 - val_accuracy: 0.6691\n",
+ "Epoch 5/10\n",
+ "3125/3125 [==============================] - 676s 216ms/step - loss: 0.1507 - accuracy: 0.7237 - val_loss: 0.1865 - val_accuracy: 0.6767\n",
+ "Epoch 6/10\n",
+ "3125/3125 [==============================] - 675s 216ms/step - loss: 0.1316 - accuracy: 0.7522 - val_loss: 0.1847 - val_accuracy: 0.6804\n",
+ "Epoch 7/10\n",
+ "3125/3125 [==============================] - 675s 216ms/step - loss: 0.1154 - accuracy: 0.7774 - val_loss: 0.1866 - val_accuracy: 0.6822\n",
+ "Epoch 8/10\n",
+ "3125/3125 [==============================] - 673s 215ms/step - loss: 0.1011 - accuracy: 0.8007 - val_loss: 0.1907 - val_accuracy: 0.6829\n",
+ "Epoch 9/10\n",
+ "3125/3125 [==============================] - 673s 215ms/step - loss: 0.0888 - accuracy: 0.8215 - val_loss: 0.1961 - val_accuracy: 0.6792\n",
+ "Epoch 10/10\n",
+ "3125/3125 [==============================] - 673s 215ms/step - loss: 0.0782 - accuracy: 0.8402 - val_loss: 0.2027 - val_accuracy: 0.6763\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 63,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],\n",
+ " outputs=[Y_proba])\n",
+ "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "model.fit((X_train, X_train_dec), Y_train, epochs=10,\n",
+ " validation_data=((X_valid, X_valid_dec), Y_valid))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def translate(sentence_en):\n",
+ " translation = \"\"\n",
+ " for word_idx in range(max_length):\n",
+ " X = np.array([sentence_en]) # encoder input \n",
+ " X_dec = np.array([\"startofseq \" + translation]) # decoder input\n",
+ " y_proba = model.predict((X, X_dec))[0, word_idx] # last token's probas\n",
+ " predicted_word_id = np.argmax(y_proba)\n",
+ " predicted_word = text_vec_layer_es.get_vocabulary()[predicted_word_id]\n",
+ " if predicted_word == \"endofseq\":\n",
+ " break\n",
+ " translation += \" \" + predicted_word\n",
+ " return translation.strip()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'me gusta el fútbol'"
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "translate(\"I like soccer\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nice! However, the model struggles with longer sentences:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'me gusta el fútbol y a veces mismo al bus'"
+ ]
+ },
+ "execution_count": 66,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "translate(\"I like soccer and also going to the beach\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Bidirectional RNNs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To create a bidirectional recurrent layer, just wrap a regular recurrent layer in a `Bidirectional` layer:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU\n",
+ "encoder = tf.keras.layers.Bidirectional(\n",
+ " tf.keras.layers.LSTM(256, return_state=True))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "encoder_outputs, *encoder_state = encoder(encoder_embeddings)\n",
+ "encoder_state = [tf.concat(encoder_state[::2], axis=-1), # short-term (0 & 2)\n",
+ " tf.concat(encoder_state[1::2], axis=-1)] # long-term (1 & 3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Warning**: the following cell will take a while to run (possibly a couple hours if you are not using a GPU)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/10\n",
+ "3125/3125 [==============================] - 574s 181ms/step - loss: 0.3075 - accuracy: 0.5393 - val_loss: 0.2192 - val_accuracy: 0.6319\n",
+ "Epoch 2/10\n",
+ "3125/3125 [==============================] - 564s 180ms/step - loss: 0.1916 - accuracy: 0.6689 - val_loss: 0.1880 - val_accuracy: 0.6731\n",
+ "Epoch 3/10\n",
+ "3125/3125 [==============================] - 566s 181ms/step - loss: 0.1602 - accuracy: 0.7119 - val_loss: 0.1751 - val_accuracy: 0.6916\n",
+ "Epoch 4/10\n",
+ "3125/3125 [==============================] - 566s 181ms/step - loss: 0.1395 - accuracy: 0.7415 - val_loss: 0.1715 - val_accuracy: 0.6979\n",
+ "Epoch 5/10\n",
+ "3125/3125 [==============================] - 566s 181ms/step - loss: 0.1227 - accuracy: 0.7666 - val_loss: 0.1707 - val_accuracy: 0.7025\n",
+ "Epoch 6/10\n",
+ "3125/3125 [==============================] - 567s 181ms/step - loss: 0.1085 - accuracy: 0.7887 - val_loss: 0.1730 - val_accuracy: 0.6995\n",
+ "Epoch 7/10\n",
+ "3125/3125 [==============================] - 571s 183ms/step - loss: 0.0961 - accuracy: 0.8089 - val_loss: 0.1764 - val_accuracy: 0.7000\n",
+ "Epoch 8/10\n",
+ "3125/3125 [==============================] - 567s 181ms/step - loss: 0.0852 - accuracy: 0.8273 - val_loss: 0.1821 - val_accuracy: 0.6981\n",
+ "Epoch 9/10\n",
+ "3125/3125 [==============================] - 565s 181ms/step - loss: 0.0759 - accuracy: 0.8438 - val_loss: 0.1881 - val_accuracy: 0.6956\n",
+ "Epoch 10/10\n",
+ "3125/3125 [==============================] - 565s 181ms/step - loss: 0.0682 - accuracy: 0.8577 - val_loss: 0.1951 - val_accuracy: 0.6906\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 69,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# extra code — completes the model and trains it\n",
+ "decoder = tf.keras.layers.LSTM(512, return_sequences=True)\n",
+ "decoder_outputs = decoder(decoder_embeddings, initial_state=encoder_state)\n",
+ "output_layer = tf.keras.layers.Dense(vocab_size, activation=\"softmax\")\n",
+ "Y_proba = output_layer(decoder_outputs)\n",
+ "model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],\n",
+ " outputs=[Y_proba])\n",
+ "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "model.fit((X_train, X_train_dec), Y_train, epochs=10,\n",
+ " validation_data=((X_valid, X_valid_dec), Y_valid))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'me gusta el fútbol'"
+ ]
+ },
+ "execution_count": 70,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "translate(\"I like soccer\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Beam Search"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This is a very basic implementation of beam search. I tried to make it readable and understandable, but it's definitely not optimized for speed! The function first uses the model to find the top _k_ words to start the translations (where _k_ is the beam width). For each of the top _k_ translations, it evaluates the conditional probabilities of all possible words it could add to that translation. These extended translations and their probabilities are added to the list of candidates. Once we've gone through all top _k_ translations and all words that could complete them, we keep only the top _k_ candidates with the highest probability, and we iterate over and over until they all finish with an EOS token. The top translation is then returned (after removing its EOS token).\n",
+ "\n",
+ "* Note: If p(S) is the probability of sentence S, and p(W|S) is the conditional probability of the word W given that the translation starts with S, then the probability of the sentence S' = concat(S, W) is p(S') = p(S) * p(W|S). As we add more words, the probability gets smaller and smaller. To avoid the risk of it getting too small, which could cause floating point precision errors, the function keeps track of log probabilities instead of probabilities: recall that log(a\\*b) = log(a) + log(b), therefore log(p(S')) = log(p(S)) + log(p(W|S))."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# extra code – a basic implementation of beam search\n",
+ "\n",
+ "def beam_search(sentence_en, beam_width, verbose=False):\n",
+ " X = np.array([sentence_en]) # encoder input\n",
+ " X_dec = np.array([\"startofseq\"]) # decoder input\n",
+ " y_proba = model.predict((X, X_dec))[0, 0] # first token's probas\n",
+ " top_k = tf.math.top_k(y_proba, k=beam_width)\n",
+ " top_translations = [ # list of best (log_proba, translation)\n",
+ " (np.log(word_proba), text_vec_layer_es.get_vocabulary()[word_id])\n",
+ " for word_proba, word_id in zip(top_k.values, top_k.indices)\n",
+ " ]\n",
+ " \n",
+ " # extra code – displays the top first words in verbose mode\n",
+ " if verbose:\n",
+ " print(\"Top first words:\", top_translations)\n",
+ "\n",
+ " for idx in range(1, max_length):\n",
+ " candidates = []\n",
+ " for log_proba, translation in top_translations:\n",
+ " if translation.endswith(\"endofseq\"):\n",
+ " candidates.append((log_proba, translation))\n",
+ " continue # translation is finished, so don't try to extend it\n",
+ " X = np.array([sentence_en]) # encoder input\n",
+ " X_dec = np.array([\"startofseq \" + translation]) # decoder input\n",
+ " y_proba = model.predict((X, X_dec))[0, idx] # last token's proba\n",
+ " for word_id, word_proba in enumerate(y_proba):\n",
+ " word = text_vec_layer_es.get_vocabulary()[word_id]\n",
+ " candidates.append((log_proba + np.log(word_proba),\n",
+ " f\"{translation} {word}\"))\n",
+ " top_translations = sorted(candidates, reverse=True)[:beam_width]\n",
+ "\n",
+ " # extra code – displays the top translation so far in verbose mode\n",
+ " if verbose:\n",
+ " print(\"Top translations so far:\", top_translations)\n",
+ "\n",
+ " if all([tr.endswith(\"endofseq\") for _, tr in top_translations]):\n",
+ " return top_translations[0][1].replace(\"endofseq\", \"\").strip()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'me [UNK] los gatos y los gatos'"
+ ]
+ },
+ "execution_count": 72,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# extra code – shows how the model making an error\n",
+ "sentence_en = \"I love cats and dogs\"\n",
+ "translate(sentence_en)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Top first words: [(-0.012974381, 'me'), (-4.592527, '[UNK]'), (-6.314033, 'yo')]\n",
+ "Top translations so far: [(-0.4831518, 'me [UNK]'), (-1.4920667, 'me encanta'), (-1.986235, 'me gustan')]\n",
+ "Top translations so far: [(-0.6793061, 'me [UNK] los'), (-1.9889652, 'me gustan los'), (-2.0470557, 'me encanta los')]\n",
+ "Top translations so far: [(-0.7609749, 'me [UNK] los gatos'), (-2.0677316, 'me gustan los gatos'), (-2.26029, 'me encanta los gatos')]\n",
+ "Top translations so far: [(-0.76985043, 'me [UNK] los gatos y'), (-2.0701222, 'me gustan los gatos y'), (-2.2649746, 'me encanta los gatos y')]\n",
+ "Top translations so far: [(-0.81283045, 'me [UNK] los gatos y los'), (-2.118244, 'me gustan los gatos y los'), (-2.96167, 'me encanta los gatos y los')]\n",
+ "Top translations so far: [(-1.2259341, 'me [UNK] los gatos y los gatos'), (-1.9556838, 'me [UNK] los gatos y los perros'), (-2.7524388, 'me gustan los gatos y los perros')]\n",
+ "Top translations so far: [(-1.2261332, 'me [UNK] los gatos y los gatos endofseq'), (-1.9560521, 'me [UNK] los gatos y los perros endofseq'), (-2.7566314, 'me gustan los gatos y los perros endofseq')]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'me [UNK] los gatos y los gatos'"
+ ]
+ },
+ "execution_count": 73,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# extra code – shows how beam search can help\n",
+ "beam_search(sentence_en, beam_width=3, verbose=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The correct translation is in the top 3 sentences found by beam search, but it's not the first. Since we're using a small vocabulary, the \\[UNK] token is quite frequent, so you may want to penalize it (e.g., divide its probability by 2 in the beam search function): this will discourage beam search from using it too much."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Attention Mechanisms"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We need to feed all the encoder's outputs to the `Attention` layer, so we must add `return_sequences=True` to the encoder:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU\n",
+ "encoder = tf.keras.layers.Bidirectional(\n",
+ " tf.keras.layers.LSTM(256, return_sequences=True, return_state=True))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# extra code – this part of the model is exactly the same as earlier\n",
+ "encoder_outputs, *encoder_state = encoder(encoder_embeddings)\n",
+ "encoder_state = [tf.concat(encoder_state[::2], axis=-1), # short-term (0 & 2)\n",
+ " tf.concat(encoder_state[1::2], axis=-1)] # long-term (1 & 3)\n",
+ "decoder = tf.keras.layers.LSTM(512, return_sequences=True)\n",
+ "decoder_outputs = decoder(decoder_embeddings, initial_state=encoder_state)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And finally, let's add the `Attention` layer and the output layer:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "attention_layer = tf.keras.layers.Attention()\n",
+ "attention_outputs = attention_layer([decoder_outputs, encoder_outputs])\n",
+ "output_layer = tf.keras.layers.Dense(vocab_size, activation=\"softmax\")\n",
+ "Y_proba = output_layer(attention_outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Warning**: the following cell will take a while to run (possibly a couple hours if you are not using a GPU)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/10\n",
+ "3125/3125 [==============================] - 597s 189ms/step - loss: 0.3074 - accuracy: 0.5469 - val_loss: 0.2106 - val_accuracy: 0.6487\n",
+ "Epoch 2/10\n",
+ "3125/3125 [==============================] - 585s 187ms/step - loss: 0.1902 - accuracy: 0.6789 - val_loss: 0.1865 - val_accuracy: 0.6830\n",
+ "Epoch 3/10\n",
+ "3125/3125 [==============================] - 585s 187ms/step - loss: 0.1659 - accuracy: 0.7123 - val_loss: 0.1759 - val_accuracy: 0.7005\n",
+ "Epoch 4/10\n",
+ "3125/3125 [==============================] - 584s 187ms/step - loss: 0.1493 - accuracy: 0.7359 - val_loss: 0.1728 - val_accuracy: 0.7060\n",
+ "Epoch 5/10\n",
+ "3125/3125 [==============================] - 582s 186ms/step - loss: 0.1358 - accuracy: 0.7548 - val_loss: 0.1724 - val_accuracy: 0.7084\n",
+ "Epoch 6/10\n",
+ "3125/3125 [==============================] - 583s 186ms/step - loss: 0.1245 - accuracy: 0.7712 - val_loss: 0.1738 - val_accuracy: 0.7103\n",
+ "Epoch 7/10\n",
+ "3125/3125 [==============================] - 582s 186ms/step - loss: 0.1148 - accuracy: 0.7863 - val_loss: 0.1770 - val_accuracy: 0.7111\n",
+ "Epoch 8/10\n",
+ "3125/3125 [==============================] - 582s 186ms/step - loss: 0.1064 - accuracy: 0.7992 - val_loss: 0.1806 - val_accuracy: 0.7110\n",
+ "Epoch 9/10\n",
+ "3125/3125 [==============================] - 582s 186ms/step - loss: 0.0991 - accuracy: 0.8101 - val_loss: 0.1862 - val_accuracy: 0.7088\n",
+ "Epoch 10/10\n",
+ "3125/3125 [==============================] - 581s 186ms/step - loss: 0.0929 - accuracy: 0.8205 - val_loss: 0.1903 - val_accuracy: 0.7077\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 77,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],\n",
+ " outputs=[Y_proba])\n",
+ "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"nadam\",\n",
+ " metrics=[\"accuracy\"])\n",
+ "model.fit((X_train, X_train_dec), Y_train, epochs=10,\n",
+ " validation_data=((X_valid, X_valid_dec), Y_valid))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'me gusta el fútbol y también ir a la playa'"
+ ]
+ },
+ "execution_count": 78,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "translate(\"I like soccer and also going to the beach\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Top first words: [(-0.26210824, 'me'), (-2.553061, 'prefiero'), (-3.2005944, 'yo')]\n",
+ "Top translations so far: [(-0.32478744, 'me gusta'), (-3.0608056, 'prefiero el'), (-3.1685317, 'me gustan')]\n",
+ "Top translations so far: [(-0.7464272, 'me gusta el'), (-2.4712462, 'me gusta fútbol'), (-2.9149299, 'me gusta al')]\n",
+ "Top translations so far: [(-1.0369574, 'me gusta el fútbol'), (-2.3301778, 'me gusta el el'), (-2.9658434, 'me gusta fútbol y')]\n",
+ "Top translations so far: [(-1.0404125, 'me gusta el fútbol y'), (-2.5983238, 'me gusta el el fútbol'), (-2.9736564, 'me gusta fútbol y también')]\n",
+ "Top translations so far: [(-1.0520902, 'me gusta el fútbol y también'), (-2.6003318, 'me gusta el el fútbol y'), (-3.128903, 'me gusta fútbol y también me')]\n",
+ "Top translations so far: [(-1.9568634, 'me gusta el fútbol y también ir'), (-2.6169589, 'me gusta el el fútbol y también'), (-2.6949644, 'me gusta el fútbol y también fuera')]\n",
+ "Top translations so far: [(-1.9676423, 'me gusta el fútbol y también ir a'), (-2.8482866, 'me gusta el fútbol y también fuera a'), (-3.7197533, 'me gusta el el fútbol y también ir')]\n",
+ "Top translations so far: [(-1.9692448, 'me gusta el fútbol y también ir a la'), (-2.8501132, 'me gusta el fútbol y también fuera a la'), (-3.7309551, 'me gusta el el fútbol y también ir a')]\n",
+ "Top translations so far: [(-1.9733216, 'me gusta el fútbol y también ir a la playa'), (-2.851697, 'me gusta el fútbol y también fuera a la playa'), (-3.7333717, 'me gusta el el fútbol y también ir a la')]\n",
+ "Top translations so far: [(-1.9737166, 'me gusta el fútbol y también ir a la playa endofseq'), (-2.8547554, 'me gusta el fútbol y también fuera a la playa endofseq'), (-3.737218, 'me gusta el el fútbol y también ir a la playa')]\n",
+ "Top translations so far: [(-1.9737166, 'me gusta el fútbol y también ir a la playa endofseq'), (-2.8547554, 'me gusta el fútbol y también fuera a la playa endofseq'), (-3.7375438, 'me gusta el el fútbol y también ir a la playa endofseq')]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'me gusta el fútbol y también ir a la playa'"
+ ]
+ },
+ "execution_count": 79,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "beam_search(\"I like soccer and also going to the beach\", beam_width=3,\n",
+ " verbose=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Attention Is All You Need: The Transformer Architecture\n",
+ "### Positional encodings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "max_length = 50 # max length in the whole training set\n",
+ "embed_size = 128\n",
+ "tf.random.set_seed(42) # extra code – ensures reproducibility on CPU\n",
+ "pos_embed_layer = tf.keras.layers.Embedding(max_length, embed_size)\n",
+ "batch_max_len_enc = tf.shape(encoder_embeddings)[1]\n",
+ "encoder_in = encoder_embeddings + pos_embed_layer(tf.range(batch_max_len_enc))\n",
+ "batch_max_len_dec = tf.shape(decoder_embeddings)[1]\n",
+ "decoder_in = decoder_embeddings + pos_embed_layer(tf.range(batch_max_len_dec))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Alternatively, we can use fixed, non-trainable positional encodings:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"class PositionalEncoding(tf.keras.layers.Layer):\n",
- " def __init__(self, max_steps, max_dims, dtype=tf.float32, **kwargs):\n",
+ " def __init__(self, max_length, embed_size, dtype=tf.float32, **kwargs):\n",
" super().__init__(dtype=dtype, **kwargs)\n",
- " if max_dims % 2 == 1: max_dims += 1 # max_dims must be even\n",
- " p, i = np.meshgrid(np.arange(max_steps), np.arange(max_dims // 2))\n",
- " pos_emb = np.empty((1, max_steps, max_dims))\n",
- " pos_emb[0, :, ::2] = np.sin(p / 10000**(2 * i / max_dims)).T\n",
- " pos_emb[0, :, 1::2] = np.cos(p / 10000**(2 * i / max_dims)).T\n",
- " self.positional_embedding = tf.constant(pos_emb.astype(self.dtype))\n",
+ " max_dims = (embed_size + 1) // 2 * 2 # round up to nearest even number\n",
+ " p, i = np.meshgrid(np.arange(max_length), 2 * np.arange(max_dims // 2))\n",
+ " pos_emb = np.empty((1, max_length, max_dims))\n",
+ " pos_emb[0, :, ::2] = np.sin(p / 10_000 ** (i / max_dims)).T\n",
+ " pos_emb[0, :, 1::2] = np.cos(p / 10_000 ** (i / max_dims)).T\n",
+ " self.pos_encodings = tf.constant(pos_emb.astype(self.dtype))\n",
+ " self.supports_masking = True\n",
+ "\n",
" def call(self, inputs):\n",
- " shape = tf.shape(inputs)\n",
- " return inputs + self.positional_embedding[:, :shape[-2], :shape[-1]]"
+ " batch_max_length = tf.shape(inputs)[1]\n",
+ " return inputs + self.pos_encodings[:, :batch_max_length]"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
- "max_steps = 201\n",
- "max_dims = 512\n",
- "pos_emb = PositionalEncoding(max_steps, max_dims)\n",
- "PE = pos_emb(np.zeros((1, max_steps, max_dims), np.float32))[0].numpy()"
+ "pos_embed_layer = PositionalEncoding(max_length, embed_size)\n",
+ "encoder_in = pos_embed_layer(encoder_embeddings)\n",
+ "decoder_in = pos_embed_layer(decoder_embeddings)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 83,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAngAAAFYCAYAAADA04GRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOxdeZwUxfX/9uzJLfclIgoiioAIKl4ICwoo4C3emkTjkRhNTOIRk5hfvHKoSbxiEkHjrSgIghy7qHhFFBZRkUNBuW+XhT1n5v3+eFu7tbVV3T0zXb0L9vfz6c/M9PR09VS9evV9r169cogIESJEiBAhQoQIEfYfxBr7ASJEiBAhQoQIESIEi4jgRYgQIUKECBEi7GeICF6ECBEiRIgQIcJ+hojgRYgQIUKECBEi7GeICF6ECBEiRIgQIcJ+hojgRYgQIUKECBEi7GdosgTPcZwnHcfZ6jjOZ4bvHcdx/u44zmrHcT51HGdw2M8YIUKECBEiRIjQFNFkCR6AKQDGuHw/FkCfmuMaAI+F8EwRIkSIECFChAhNHk2W4BHROwB2ulwyEcDTxPgQwAGO43QN5+kiRIgQIUKECBGaLposwfOB7gDWSZ/X15yLECFChAgRIkT4XiO7sR8gAziac9p91xzHuQY8jYt2wDG9+CSobVskDjwQcHS3Sg1EwJYtMWzdGoO6+1ubNoTu3RPIycm4mJSxevVqAEDv3r1dr0skEsjKygrjkRqCCFnr1sHZtYs/Z2UBiQR/1awZkj16gJo1C6So0lIH69dnoaqq/vmcHKBHjwRataprvDDrZOdOdla3a9culPLSgfPdd8hatw5IJvmEaKfsbCQ7dUKyY8dAyqmuBjZuzMJ33zXsl506JdGlSzKILhsoGrX/yIjHkbVmDZyyMv4s96U2bVjfZWeu9omAHTti2Lw5Jm5fi2bNCD17JpCd3UTqpIkhkUggZ/t2xDZv5hOOw0cyCcrPR7JrV1Dr1oGUVVbmYMOGGMrKHDgOasemWAzo3j2Jdu2SgZSTKZpM/5HglJcja80aVkhAXV/KykKyfXsku3QJhDvE48wdduxgf1sdf/hkOxFlplSJqMkeAA4G8Jnhu38CuEj6vAJAV697Dhw4kOj994muu44IIJowgaiigjLB2rVE/frx7S69lGjLFqJ4nG97331EeXlEbdsSzZ6dUTFpYfjw4TR8+HDP67Zt22b/YXTYs4do9GiuvJtvJlq0iCiRINqwgeihh4i6dSNq145o8eKMikkmiW64gYvp3Zto3jw+V1FB9N57RIcfzt9dfz0XTxRunUyePJkmT54cWnkp41//IorFqGrIEKLXXiMqKSGqrCSaPp3o9NO58n7724yLeestolatuM/89rdEZWVE1dVEW7cSXX01FzNgANHKlZn/pSDRaP1HxurVRIceStSsGfedVatYyD//nOiWW/h8//5EGT5rWRnRiSdyWxQUEC1bxsWUlBC9+CLruubNif7+990B/bH9CNXVVHbFFVx5F1xAtHAhK6Hdu4n++U8eSLKyiF59NeOiHn2Ui+nShejf/+YxqbycaPlyohEj+LtJk7joxkaT6D8yZs8matmSqHt3oldeIdq8mYX8nXeIzj+fK+/ss1k5ZYBvviHq2pUoFiP60Y+I1q/ndtq4kQjAx5Qph8r0BjYPD4J3BoDZYE/e8QA+8nPPgQMH1tXuI49wFZx2GtHevem0D5WVEQ0eTNSmDdGsWfprvvySaOBAHri+/DKtYtJGkyZ4333HI0UsRmQiN6tXEx10ENEBBzD5SxMPPshN/dOfspJTUVZGdNNNfM1dd/G5iODV4E9/4ooZO5a2ffNNw+8TCaIf/ICv+d3v0i5mzRqi9u2ZbK9apb9mxgy+pm9fotLStIsKHI0+QC1dStS5MxtDH3ygv2b+fKL8fKJBg4h27EirmGSS6KKLiByHaMoU/qxi3bo6AjFzZlrF7J+oqiIaP54r5tZb9ZW3ezfR8ccT5eRk5BGYM4d54pln6glcPE509918zVln6R8lTDR6/5Hx7LNcMYMGMePS4W9/43a8/PI6j0CKKCkhOuoootatiT7+uOH3+zXBA/A8gE0AqsHxdT8EcC2Aa2u+dwA8AuArAMsADPFz33oEj4joySdZW118sa9GkZFMEl15JdfijBnu1377LVGHDkRHHBHuwNRkCV4yyZolJ4fo5Zfdr12zhujgg5nkmTqcC4qK6hSZW19MJtkD6zisICOCR0RvvMECfuGFRJWV5jqRSd7f/55yMXv2sBF0wAHe3rmiIrYJLr648QcmgUYdoPbuZbd09+5EX3zhfu2bbxLl5hINHcoe2BRxzz3cxPfc435deTnRkUdWU7t2rPsiENEf/kAEUKlX5e3aRXT00UzG33sv5WKWL2eHw4AB3t65Bx5Iu8sGiiZD8FatYvfzKad4V15Ne9KNN6ZcTHU10bhxPC7NmaO/Zr8meLaOBgSPiOj3v+eqMLngDHjsMf7ZnXf6u37+fB6YLrwwvIHp6quvpquvvtrzutA72CuvcOX96U/+rl+1ihXeOeekVMw33zCx7tfP31TEnj1ERx7JXqLi4vS8HOng9ddfp9dffz208nyhpISoRw+2SmrCGFzlJJFgrdW8OVe8TySTPFsVi/l3Wvzxjyw+jz3muxiraNQB6pZbuDIKC/1d//LLfP1996VUzMyZdbawH/314Yc7qGVLdtJXVaVU1P6HpUvZmL3oIn+ysm0bG7WHH54SEd+9m2fpO3Xi0CEvJJPs5cvNJfrkE9/FBI4mQfASCaKTTmJ2vG6d9/XJJJO7VPpeDW69lX/2+OPmayKCFxTBq6hgBtCzp2/32ldfcacYM4bd3X5x331c60895f83YSDUDrZzJweGDB6cWgzDvfdy5U2f7vsnY8emPjX+5Zf8m2HDqpqMh6hRcP31PKJLU36ecrJ2LRO8iRN9FzNtGjfrvff6f7REgvtebi7RZ5/5/50tNNoA9eGHzIx//OPUfnfWWdxOflgAcQhDjx7sFSor81fEtm3b6LnnuG3vuCO1x9uvUFXFHrlOnYi2bfMvKzNnpkzEb7+df7Jwof/H27aNnb+9ezde2EOTIHjCnTlliv/flJUR9erF/MEnEV+xgig7myc83BAEwXP4Pt8fDBo0iIqLixt+8e67wMknAz//OfDXv3re55JLgFdfBVavBrqnkJyFCDj2WGDrVmDlSiAvz/9vbWL79u3o0KFDOIVdfTUweTKwaBFw9NH+f1ddDQweDJSUAF98AbRs6Xr5ggXAyJHAn/4E/PKXqT3i448D110HzJgBnHlmar/dL7BwIXDKKcBNNwEPPlh72pec/PnPwK9+BUybBkyc6HppPA7078+L0ZYtS22B57ZtQJ8+wKmnclGNiVD7j0BlJfeH3buBzz8HUll5+e23QL9+wOjRvirv/vuBW2/lPnXqqf6KEHVy+eXAiy8Cq1YBBx3k/xH3G/zxj8CddwJTpwLnnJOarJx1FjBvHrB8uWflrVsHHHYYcO65wDPPuN92165d2LRpE6qqqkBESCZZvWZn82LR7x2IgKoqXl6carqLFCuvuhpIJBy0adMKhx/eC7GYPlud4zifENGQ1B5GQaYMcV87tB48gR//mK1hjxWbS5ZQbZxsOpg3j3//0EPp/T4VNLkp2vfe4z//61+n9/v33+ff//znrpclkxxmdOCB/j0OMqqqiHr1itOAAWnH0KaEJjVFm0jwtOzBB/OctQRfclJVxas1e/TwdAk8/njKTtl6EFO1H36Y3u+DQqN4IP7yF0ontKQW99/Pv/eQu61bORB8/PjUbi/q5Jtv2NPqQw3tf9i0iUNLLrig9lRKsrJ2La9+9hGacumlvPrcyym7c+dOWrZsGe3Zs4cSknLbu5ejMhpj1iIRhpJ1g/jz6T6Hz99XV/NlZWUJ+uqrr2jDhg3GaxFN0QZM8Hbt4ihvj840ZgynAti1y/UyV4waxbFhJSXp38MPmtwii7FjeaoizVXLRET0wx/yiLFpk/GSl15i6c5k3cITT5QQwIuqbKNJLbKYOpUr7/nnG3zlW07efZfvcf/9xktKS3nh50knpT+olJYSdezI6ToaE6ETvPJyzq+QyR+vqmIif9hhrgPTT3/KweBe6zdUyHUi7mFaHb3f4pe/ZKeB9MdTlhWxsuWtt4yXfPyxf6fD559/TnsUw42IQ41KSvRZBmyjUQleEH88kRDMzXhJMsn6avdukaKrgpYtW2a8PgiCty/vZBE8DjgAuP564LXXgBUrtJe89Rbw5pvAbbfx5eni3nuB7duBBx5I/x77HIqLgdmzedqvefP073PrrTy397e/ab+urgZuv52n/i67LP1iJk6swqBBPLuiJkbeb0HEwnnoocB556V/nxNPBAoKuI0MlffXvwJbtvCMbrr5Qlu2BO64Aygs5ON7g6eeAjZtYkFPFzk5wG9/y7EiM2ZoL1m1CnjsMY6q6Ncv/aJuvx3IzQV+//v077HPYedOrrwLLwQ8Es274uabgY4dgb/8xXjJL38JdOjAqtELVVVVaKZJHJ+VxbOMVVV1ucy/FxD6KTc3/XvEYvz76mpj5Ymv8vNZ3+Xm5iIej6dfpp/Hsnr3fRE33sgNZehMv/kNcOCBwE9+klkxQ4YA55/Pg9yOHZnda5/B/fcDrVpxcFsm6N2bA00ee4zjjxQ88wzHRt57b2bxJLEYcPfdwNdfA08+mcHz7ksoLAQ+/hj49a8z3/Hgl78ENm4EnnuuwVd79rBxc845wPHHZ1bMj38M9OjBRI++DyHF8Tj3peOOA0aMyOxe554LHHwws2wN/vIXFoNMiVmXLsBPf8qi8Nlnmd1rn8Hf/86CngkJB5gR/OQnwMyZHIun4OOPOTbyttuANm28b0dExrgvERP+vTFoRfxcbi4r/EwgCKKm8kgK8RNq1XEcnka1iIjgqejcGfjBD4Cnn2YLWcKSJcB77wG/+AUQxM5Zd97J/X/y5Mzv1eTx1VfASy8xucvE9Snwy1/yYot//aveaSLg4YeBI48Ezjgj82LGjuVFMQ899D0hD/feC3TrBlx+eeb3Ou00YMAAJg+KVfvMM8zNb7kl82Ly89nw+t//eK3Ufo8XXgDWrGHikOlWSdnZ7CF67z3ggw/qfbVrF7fTxRezWswUv/oV0KIFL3ra71FaygRv4kSeSsgU113Hgq6Z8vnHP7hef/jDzIvJymLHblXV90TfVVbyaybeOwHB3jSVl0iwCszNDWR3M/+PFF5R+xBuuYWt5Iceqnf60UeZ2F15ZTDFHHUUL9x9/HF7LvFBgwZh0KBBdm6eCoQr4Kabgrnf0KHsvXjwwXoW0//+ByxeDNxwQzAdyXH4XitWsJVsC126dEGXLl3sFeAH//sfUFTEK8mDWN7tOEzEv/iCp+ZrIEj44MGZe+8ELrmEvRePPRbM/Zoskkkm4f37B7e8+wc/YKNLmbWYMgUoK8t8tkKgfXu2G1566Xswa/H448yQ77gjmPt17MgDz3//y3ENNdi6lfn+FVf48975geA6YgvW/RbCe5eTk7n3TsDgAq2qYnUY+n70mQbx7WuH6yILGRdeyEvHalZB7NrFi5l+9CN/P/eL55/n4Ng33wz2vqnCapD41q28vOuaa4K97+zZDVZSXHop57ALYn9FUSfl5bwD1HnnZX7PJo0LLuDVQy6Vl7KcVFXxatpTTqk99dZb3GxPPpnug+px442cS3bLlmDv6wehLbKYO5cr77//Dfa+t93GOQ9rFgMkEpww98QT07+lrk6WLuXHf+CB9O/b5JFI8Ar0ESO0X6ctKytWcBtJmfXFKvJUFsAs9rGvd2kpH2GtqG2URRYVFZmtnDVhz566lRRUt/5Ct4bDrS0QLbKwiJtv5jmkl14CwNZseTmvwQgS55wDdOrE3sH9Fs89x67wn/402PuefjrPxT7+OAC2Zl96ia3ZVq2CKyY/H7jqKk4XtnFjcPdtUtixg//gZZcFW3k5Oey1fecdTnQH9t61awdMmhRcMQDH4lVX7+chD08+yZV3/vnB3venP+W2+sc/APBCsq++Cs57JzBgAHDCCdxl99spwAULgLVreWVKkDjsMGDCBOCRR4CKClRXs8d69OjMFsDokJvLDq5EItj7NhmIoLisLK337t5778XQoUPRunVrdOzYEePHj8dnSvCo8ZrcXL5/zQKKINZwpIuI4Jlw7LHca6ZMQTLJBGzYsNTy8vpBbi7rgZkzgW++CfbeAHDppZfi0ksvDf7GqWDyZF5VEkQsigzHYeb1v/8By5fjP//hzhQ0CQeYPMTjwL//Hfy9AeDVV1/Fq6++aufmfvDcc1x5P/hB8Pe+/HImD089hfXreZH6j34UTByrjCOOAIYPB/75z/10FeDOnVx5F18cfIb0rl2ZPNTIwT/+wafOOSfYYgDg2mt54e5bbwV/7yaBJ5/kKe+zzgr+3tdfz3IwcyZeew3YsCF4uxmom0rcb6dpEwkmYQbW9dZbb+H666/H+++/j6KiImRnZ2PUqFHYuXOn9zW7d/PYVFUForocyEHNAqeETF2A+9rhe4qWqDYR6LuTV1qZFRH45htOlXT77cHfu9Hz4C1ezHMIDz9s5/6bNhFlZVHil7+mgw4yzoqkBbVORo/mLX1S2V3NLxo9D97RR/PhgbTl5KyziDp3pt/dUU2OQ/T11+ndxgsvvMDi5ndP26AQyhTtww/zn/MxxZYWZswgAmjjY9MI4C26M4GpTsrKOORByv27/2DnTg5HueEG4yUZyUo8TtStG9H48TRyJO+SlcpWmUT+pmiJuJ1szGDq4HeKdtu2bQSAHnjgARoyZAjl5eVRnz59aM6cOakVKP6czzno0tJSisVirsno611TXk5UUkJVlQkqKTGPGdEUbWPi0kuBWAxb/vQU2rcPflZE4KCDOF76P/+p9eruP5gyha2kiy6yc/8uXYCxY1H15H+x/ttExhlY3HDddWwxz5plr4xGQXExLxG/6ip7ZVxxBbBlC9b+ay5OOw3o1ctOMWefzSEP++Vii8mTgUGDgp9GEDj9dKBTJ3z3j6cB2BMHsVDt1VfrrRfYP/D88xyOYsMTDvCU4qWXgmbPxmdFW3HFFfa2FmuKiy2WLFkCAHj44Ydx33334dNPP8WAAQNw8cUXo7y8vN6199xzD1q2bKk/OnZEy27dsNDnsvvS0lIkk0m0bdvW3zU1LlCqqobjNN72bxkmutrP0a0b4qNOx7HznsKkH9+FvDx7rXT55cDrr/O0xahR1ooJF1VVwLPP8lRFu3b2yrnySuTPnIkJzebjzDNPt1bMmWdyMtHnnuPZrP0GkyezNr/4YntljBuH6jbtMXbrU6i6ZJy1YnJzuS899BDPZNkUu1CxdCnwySecesMWcnJAF1+CQx96GGcO24GDDmpvrairr+aMH88/H9zC+iaB//yHSfjgwfbKuOwyOH/6EybheVx88c8Cu+2pmk2GJ068AFdffT0SiTKMG9ew31555ZW48sorsX37dpynSYx+3XXX4cILL8S6detwmZJ1/q005uiLi4uRlZWFWbNmoW/fvgCA+++/H71798aXX36JoyXj59prr8UFF1zQ8CZVVUzCmzdHd5+bI//sZz/DoEGDMGzYMH/XZGWBYlnISlYjJzcv1NQoMiIPngc+7HslDqT1+HGfIqvljBvHse3PP2+1mHAxYwYH79v0DAGoHH0mdjlt8evOUwKP65KRk8ObO8yYAezda6+cUCFI+MSJnMfCFnJz8V7PizER03HW8F32ygE7i+Nx9hDtNwiDhANYefzlyEU1ft3zBavlHH44OyJffNFqMeGiuJhzNNny3gn074/lzQbj2uZPo08fu0VlZTWtxRbFxcUYP358LbkDeEcIHdq1a4fevXs3PA46CL379EHvvn21O3qo+PnPf453330XU6dORZbBFae7JhHLQRaSyMlqxMrLdI53XztSisEjorPHltMupy0lL7o4pd+lg8su461wKyqCu+ett95Kt/rYoNBKDNGZZ3K8SKpBIinitdeI/oEbKJ6bn9kGwQp0dSJSfGi2ac0I8+bNo3nz5gV7Uz8Q+8763LA+XTmpriYa1bZmw8zHHkvrHn6RTBL17h3u/rRWY/Cqqnjj6vPPt1dGDX75S6KlGEBVg4/N+F5edXLffSwOa9ZkXFTTwC9+wXl6duxwvSxTWVm+nOhGPMSV57KXqQl+Y/CI3FN8BAm/MXhHHHEE3XXXXfXOTZ06lfLz82mvsr/53XffTS1atHA93nnnHdfybrrpJurSpQstX7485Wv2liYoWVJCSZfKsx2D1+iEK+wjFYK3Ywf31/cGXstJ8DQbNAeJWbO4RaZPt1qMFoEPUDt3EmVn84hhGRdcQDTqgEVcef/6V2D31dVJIsGcdeLEwIppXFx4IVHHjr5XjqQrJ3PmEAFJKulxJNGwYWndIxX85je8cGnzZutFEZFlgjdvHsv2q6/aK4NYtg88kOhfR/yVy3MZ1PzAq06+/pqLuf/+jIppGkgmiXr2JBo3zvPSTGXlzjuJOjtbKJmdTfSrX6X8+1QIHhEPe7Zz4vkheOXl5ZSVlUW/+93v6p0/+eST6corr2xw/Y4dO2jVqlX1j88/p1WLF9OqFSto1apVVFZWZizvxhtvpE6dOtEXLkkGTdcIYhwv3VsvJ56KaJFFI2LqVA4w7XDt+ZwE7803rZY3ahTPkr1gd3YkHMyYwfNkmWxY7wN79nBRh110DHDIIdbn5WIx3jt89mzgu++sFmUf5eXAG29wjGSm+8564LnngDZtHDT70cW8JdaGDVbLmzSJp5ZeecVqMeFg6lTei2rMGKvFvPsusH490P4nF3Oah5ocoLbQqxdno9ovpmkXL+Y8V5b1HRFHVBxV0AnOmDEc00N2Ewrm5HBfauzUQ8tq8mg+//zzWLhwIVasWIHLLrsMq1evxr333tvgeu0U7UEHofdhh/HRu7dxivaGG27A5MmT8fzzz6Nt27bYvHkzNm/ejD179vi6RixMcXJzuH0aaY47IngueOEFoE8foM8PT2HmZZk8iBiv6dODi/E699xzce655wZzs1QwdSrvAD90qNVipk9nnnLRxQ4n7Zo/3zrzmjSJQ9emTQvuni+++CJeDHukmzuXGbJl+Sgv565zzjlAzgU1idWCrDwNjjySj32ePCQSXHnjxgWfOFDBc88BzZsDp13ehbMRhxDEeOGFzI1WrbJelF288gobSRMnWi3mo4+Ar7+uCcU891xg3TpefGMRwvZr7NW0xcXF6NOnD+666y5cdNFFOProo1FaWopFixb52+ZRbAjrw5h99NFHUVpaioKCAnTt2rX2+Iu0nZ/pmj//+S+orq7JoZzTuJUXETwDNm3ihOSTJgFOTjZ7OWbOrNuc2BImTeL9H2fODOZ+O3bswI6wN34sLQXmzOER3fLyoeeeYx55wgng8qqr2StlEUOHsvchSE9reXl5g2X+1jF1KtC2LTBypNViZs9mkbj4YnB0fb9+oZCHSZOAhQvZK7XP4t13eYsWy56heJw5ysSJ7CzEOefwyt2vv7ZarljkuE8TcSKuvJEjrS/bfuklXmtzzjkAxo9nFvHaa1bLjMW4mOrqxt19pLi4GEcddRQmTZqE9evXo6ysDNOmTUP37t393UDkIPOxIaxpyvP3v/+95zW//e3vkUzWFOM4TCjj8UapvIjgGfDqq9wetdspnXMOb102f77Vck8+mTPI79MKb9YsJsKWPUO7dwPz5vEgEYsBOO44oFs36+TBcVgu5s8Htm+3WpQ9VFVxXp4JE6zvgP3aa+wAr83CcO65wNtvW6+8Cy/kV8szjXYxdSrvladJUREk3n2XF7zX8sizz+ZXy+ThwAOBk07ax/Xdp58Cq1eHMj07bRpQUAC0aQPuVMOHW28jgFUEUeNO0xYXF2PAgAHp36DWrWaX9ggeWesozGm8adqI4Bnw+uu89d8RR9ScKCgAWre2Th6ysthZOGcOUFFhtSh7mDoV6Ny5xq1mD3PmcJ+t3REoFuOBafZsdoNaxHnncX+17Cy0h6IioKTE+qAkHKpnnikpvHPO4cqbMcNq2X36cEqyEMY/O0gmuS+NGQO0bGm1qOnTefez006rOdGrF1deCJ7WCy4APvsMWLHCelF28MorrHtsbE0m4fPP2aFabxb47LOB5cuBL7+0WnZjb11GRFi2bFn6BE8EEVqONQaY4MViEo8UZTbCLgYRwdNg926enq2XzDYvj0ep6dOtN9T48cxPiuym3rOD8nL24J11lvX03dOnsxFbL/fkOefwM8yZY7Xso48Gune3zlHs4ZVXOPHi6NFWi3nvPWDXLqUvDRoEHHxwKORhwgTg/ffZO7XP4X//AzZuDMUzNH0627D1eOQ55/CCmE2brJYvZGOf7EtEwMsvs3u6Y0erRU2fzq/jx0snBam0bMWI3Rgaa6clx3Gwe/duTEg3w7xgppZnK0TOwHrFyJUX8jRtRPA0EJ6hBrJ07rk8UrzzjtXyR4zgOJggFF5BQQEKCgoyv5FfzJnDK0QsT8/KnqF6PPKUmgUxU6daLd9xWNG++WYwntZevXqhl639u1TE4zzXc+aZwW9ar6CBZwjgyjvnHF7kUVpqtfzx41np7pPby73yCo8UZ55ptZjPPwfWrNGsDzj77Dr2ZxE9ewIDBuyjBG/5cnY9WibhADfDscdyFEotDjyQg4JDmqZtSkmPU0IDt5q9YgCNo7CRliI3aYLnOM4Yx3FWOI6z2nGcWzXfn+o4TonjOMU1x2+DKPf11zWeIYD3amzWzDp5yM/nol5/PXPCf+edd+LOO+8M5sH84LXXOHBfs+1NkHjvPV4s22BQEivZZszgODOLGD+euWwaO+40wPDhwzF8+PDMb+QH773Hhso551gtxugZArjsqirrzGvwYI5pff11q8XYweuvSwFX9qD1DAG8DLlPn1A8rePHs1ju3Gm9qGAhWKnlvQs3bgQWLTIs0j3nHP5y3Tqrz9CIM42ZQetWs4N4nO3XBjyykSqvyRI8x3GyADwCYCyAIwBc5DjOEZpLFxLRoJrjD5mWG4+zZ+iMMzQsvEULdkXMnGnd1TphAnfqxYutFhMshKtk3Djrnen119kzpJ1hPOssnmd/+22rzzByJKeV2Oc8D7Nmcfucbm/fXsDFMwSw9dS5cygrAM88kx3Llvl+sFi5kgP3LXvvgDrPUNeuyheOw168BQt4nt0ixo/nMXj2bKvFBI833uCQA78rOdOEMFC0fUksiLGcekg4wPY5gmd0qwULIi4qJ0eTPEJeihwimizBA3AsgNVE9DURVQF4AYDdJEMwxAzJOOMM4NtvgS++sPoc48axTGTqeRg7dizGjh0bzEN5YdEiXhl5xhlWiyGqc25oY89HjmT2Z3m0yM9nvh+Ep/WZZ57BM888E8yDeeGNN3gqu1Urq8UI2dVylFiMhXzOHOsjxoQJPBNsme8HC7F6x3JfcvUMAVx58TgvV7eIoUOZ7+9TxtKuXRzgabmNACbhhx4qLfqT0bcvpx8KKreWC7KzmYg3ZrqUlGF0qwVfDODCI7OzQ5+mbcoErzsA2ee8vuacimGO4yx1HGe24zhHZlro669znqF6MUMyBFmyPLXUsSMvQs1U4YWaX23WLO5ExsoLBsuXA1995ULCW7TgKeIQAq8mTOA8a8XFmd0nHo8jHoZp/M037FqznHYD4L7UIGZIxrhxPM/+v/9ZfY6CAo6s2KfIwxtv8Gh+8MFWi/GcYTzuOA65sGwsxWLMk958s/ET6vrGnDnMdiwTvNJSXnA3caJLWtGxYzlWJKgM+Qbsc9O0wq2WnW09J6vgkca1hY1QefbXDKcPXWuodsNiAD2JaI/jOOMATAPQp8GNHOcaANcAQLdu3bDdkH+LCHjttbY46aQEKit363Ma5+fjgCOPRHL6dOy+6qoU/k7qGDmyGf7whxZYunQnundPj/VX12hL038WKCkpSev+Mtq8/jpwzDEoIbKa4+y555oBaIETT9yJ7dv19ZJ/yiloOWcOdi5ahGSaixf81MnxxztwnHZ48cUy9OiRPpEurVls4NVOmSL/pZfQEsCuE05AIo2y/MrJli0O/ve/9rjttr3Yvl1fL87RR6NdVhbKX3kFZX37pvwsqeCUU1ph2rRs3HnnLit6Poj+I+Ds2YN277yD8muuQZlleXjlldY4+OAsdO68y9hlWw0fjpw33sDOrVtT8oKkWifDh+fiySdbY+bMEpx8ctNneS1ffRW57dtj5yGHpKTvUq2XmTNzUVXVGqec8h22b9eTg5wTTkCbBx9EyfTpqPZhYCfT9CLFYryilVPKBevGS/eZ3OAkEnAAUFYWyLLnLB53kJUlEiDrHsaB4zhAPA6S3HxWdX6mm9naOgAMAzBH+nwbgNs8frMWQAe3awYOHGjc3PfLL3nz60ceMV7CuPVWouxsou++87gwMyxf7vN5XDB8+HAaPny453UZb5a+aRM/7N13Z3YfHzjxRKJjjvG4aNUqfp5//CPtcvzWybBhPp7HA5MnT6bJkydndhM/OPNMokMOSXvncL91MnkyV39xsceFp5xCNGhQWs+SCp54gp/n00/t3D/j/iPj1Vf5YRcsCO6eGpSXEzVrRvTTn3pc+NRT/DyffJLS/VOtkz17iPLyiG66KaWfNQ7icaL27YkuvTTln6ZaL1dfTdS6NVFVlctFFRVEzZsTXX+95/3cNrj3g7Iyot2701YhWiQSieBuJqO8nKikJNiH1SAe52Jc24iIK096Hre2APAxZcijmvIU7SIAfRzH6eU4Ti6ASQDqRaQ5jtPFcdgedxznWPCUc9oZr958k189Q9bGjQslLqVvX843ajmlWzAQlWd56u+774APP/Sx73rv3rwCMISo7TPO4O0gt2yxXlRmKC8HCgv5gS1PV7z5JtClC6e/cMW4cTy/vXGj1ecRcYD7RGLqN97glbMnnmi1mIULWSQ819qICyyHPLRoweGz+8RU+kcf8Ur0EOKN33wTGDXKY91aXh7HIsyaZT1ALju70TZmSB3xOM+ZhjA9C/hI/So8dyFVXpMleEQUB/ATAHMALAfwEhF97jjOtY7jXFtz2XkAPnMcZymAvwOYVMN808KcObx7heeM3rBhwAEHWFd4jsO6tago/RWAZ555Js4MYSUeZs3iZXgDB1otprCQ+4YnwQOYPBQV8ShmEWL8y4TvH3bYYTjssMOCeSAT3n6b68IyCU8kuC5OP92HXhXPIgwES+jalclmkzeWiLgvnXaa9ZXoc+ZwvLFnRqPOnYEhQ0IxlsaO5fjar76yXlRmeOMNHs0tr0T/8kvOfuJL340dC6xda31LkH0mDi/k3St87YIWcuU1WYIHAEQ0i4gOI6JDiejumnOPE9HjNe8fJqIjiWggER1PRO+nW1ZFBceo+uqv2dl84ezZ1lfEnH46sGcPL9ZKB7fccgtuueWWYB9KRXU1J60dN866pTRnDu8Yd9xxPi4eN66uYS1i8GCgQ4fMyMMJJ5yAEyxv7YY33uDVBpZzFH78Mecz8zUo9e/PKSZCWBBz+um8Sn7PHutFpY/iYt45IoRFMG++yYupW7TwcfG4cew6t5yoTujfuXOtFpM53niDV8G1bWu1GGH3+BqXxNSTZSLe2Lta+IZ4QMuGkvBm+tq4KeTKa9IEL0z4nq4QGDcO2Lw58+WTHhg5kvlkk/Y8vP8+72vaVKYrBE45hRPVWSYPsRjn45s7t3E343aF8AwVFHB+F4uYM4f1mK9d0ByH+9K8edaXT55+Ohdhme9nBiGrllMbrVvHi6l9kXDxPMmkdebVpw/vbNGk9d2mTaz3QyLh/foBBx3k4+KDD+aLQzCWGiHjR+rIcPeKTZs24YorrkDHjh2Rn5+PI444Am8ruZYeffRRHHJIL3TqlI8TTjgGCxcu9L5xiJUXEbwa+J6uEBCa0XJnat2aDcV0Fd6pp56KUy17bDBnDgut5S3RxHSFbxKen88MOSTv0NatwNKl6f1+ypQpmDJlSqDPVA9ffcU7lfse0dPHm29yXrP27X3+YNw4Tkz93ntWn+ukk5jvN2nyMHcub3TcubP1YoAUxEE0aIhhKU02Xcr8+fxqOR1UWRlHVaTUZceO5a00LbupQw4lSx0iPUqa+6F/9913OPHEE0FEeOONN7B8+XL84x//QKdOnWqvefHFF/Gzn/0Mt9xyO959dwlOOOEEjB07Ft9++637zUOcpo0IXg3mzAFOPtnndAUAdOrEitjyQguAFd6SJU04iL+oiBOetW5ttRgxMKcU9jJmDBMby0E9Qtc3WfIg5NTyoLRrF6e1S2lQKihgpWfZO5SXxwZck22jPXuADz7w6frMDG++yTPj2sS5Ooh4szlzrAfxn34653778EOrxaSPuXM5JmPQIKvFvP02UFmZBsGrquLdRyyC06WEP027fft2OI6DBx98EEOHDkV+fj4OO+wwzFV1h2Ceacbf/elPf0LXrl3x9NNP49hjj0WvXr1QUFCAfv361V7zwAMP4IorrsTll1+NI47oh4cf/ge6du2Kxx57zP3mIVZeRPDAiWo/+yyNeNnRo1khW7aWmnRcSkkJp8K37L0DeFA6/HCewvGNUaP41TIRb/JB/PPmccX17m21mPnzeeYhpb7UqhUbCIWF1p5L4PTTgVWreAu1Joe332a3lWUSLhIAjBmTYsjs6NHspv7sM2vPBrDTPSurifYlIhbyUaOs74zw5pscMnvKKSn86KST+EfCy2gJcihZmLtaLFmyBADw8MMP47777sOnn36KAQMG4OKLL66f0D8exz1/+Qtatm2Lli1bGg/TlOq0adNw3HHH4cILL0SnTp0waNAgPPzwwyIdG6qqqvDJJ59g9OjTQFTHI0877TS87xUw7zj8gxAIXlNOdBwaBHFKi+D96U/sErcYj3H00byzxZw5wGWXWSsmPbzzDo/oI0daLaa8nMe/H/84xR8edhjQowePaNde6319Bjj9dOChh5jva7dQayzE4+xlPf/8UNKjHHAA87WUMGoU8Mc/ch6cAw4I/sFqIPr4nDnWxSF1zJ3LYQWW06N89BHbZSnP1gsjrrAQOOqowJ9L4IADeBHVnDksEk0Kn33GsdeWSTjAfenUU1MMmc3PZ5KXhrGkCxE58sgjMXToUFRXV+PZZ5+t9108Dhx++CAMGzYIlZVleOmllxr8fsiQIejfvz9KSkrwmrLv9JVXXpnyMxYXFyMrKwuzZs1C35rk6Pfffz969+6NL7/8EkcffXTtw1179dW44PLLXe/X3bCH8Ndff41HH30UN998M2699VYUFxfjpz/9KQDgJz/5CbZv345EIoH27TmUQhC8zp07Y74fcp2dzcacZXYcefDAiqRr1zR01kkncYey7B1q0kH8hYVcB8OGWS3mnXd4QWzKJFxE+xcVWQ8YEUH8lmdHUsfHH/OIbnnqj4j70qhRacyMFBSwcFteAXHYYRyw3iS9Q/PmsbsmhEUwsVgaTvcePXgVhGXvEMB96ZNPrG6Ikx6EN8ByX/rmG2DlyjR5ZEEBr6DZvDnw55IhHJhhTtMWFxdj/PjxteQOAHJzc+tfVLOAoV2nTujdu7fr0axZM205yWQSgwcPxr333oujjz4aV111FW688UY88sgjynVOvXUcRATHjxEtYgMtD+jfew9eIsH6asKENJwb+fkcuBdCHN6YMcBzz/HircGD/f/uggsusPZMAJjgnXQSBzhZxLx5vAhm+PA0fjx6NPDkkzxipOxa8g85iH/8+NR+e+SRGW+jbMbcuSzclqfRV6wANmxIc+w7/niuvMJC4Kyzgn60Wogg/hdeYDJuOYOCf6xfz5ss//CH1osqLOQ1E2ll+CgoAJ55xnrlnX468LvfsW6eNMlaMalj3jxeqXrggVaLKSriVxFhkhJEPy8qAi6+2PfP3DxqOTk52u/37GGC16JFc9fft2nTJi2PnYri4mJceOGF9c4tWrQI+fn5daSvxpC/589/xj333ed6v9mzZ+Pkk09ucL5r1644QglQ7devH/72t78BADp06ICsrCxs2rS5njG7detWdPazQEqwQssE73vvwVu6lFM7pdWRAB7NPv/ceiZ+uc+mguuvvx7XX3998A8E8KqPzz4LJf6uqIhXEzdvnsaPxfNZJuJ5eUxA0wklGzp0KIYOHRr8QwH8vwcPTmFZa3oQspmWOOTmsvcqpDi80lKeqmwyEF4xy56hPXt4EUzaERUFBXyTRYsCfS4VQ4YwAW1ScccVFTyVEMIimMJCXseXlt139NE8zx2CpzU7m/lUGHF4FRUVWLFiRYM9ax966CFMmjQJzcXgUONSvPa661BcXOx6DBkyRFvWiSeeiBVKwuiVK1eiZ00AeG5uLgYPPgYLFsyrt1B33rx5/vOZinQpFhPxf+8JnhiURoxI8wais1vuTN268QKDVMe/srIylJWV2XkoMRdpmeDt2MGey7QHpY4decVbCJ7WkSM5nUuqfL+6uhrVNvJCiOWIIQ1KBx0EHHJImjcoKGAv1oYNgT6XilNPZU9eqsaSVcydy6lRLMa2AZzvMx7PoMuOGMGVZ5mIZ2VxXyosDDeI3xXvvceDseX4OyKWzZEj0wyZzcridgqh8gS5CSNdyrJlywAAzz//PBYuXIgVK1bgsssuw+rVq3HvvffyRSI9SnY22rVvn/YU7c0334wPP/wQd999N1avXo2XX34Zf//733HDDTfUXvPTn/4czz03BVOm/BvLly/Hz372M2zcuBHX+g3uFZVnMT2Ub4LnOM7VjuOQdFQ4jvOZ4zhXWHu6EFBUxMSpW7c0bzBgABOIEMhDQQEr6FS2LRs3bhzG2VoAUlTEe2amMmecBt56i/ttRjxy9GhOyGx5xbMgoamSh2effbZBEHMgeOstVniWCV4yyXy/oCCDdRzpuqlTRPv2zPebDMFLJtlAHD3a+iKYwkL2NKe9aUr79uwhCsE7NHIk8O23nOWoSWDePJ6WTitOxD++/JJzKWek70aN4sqznB4qzJ23iouL0adPH9x111246KKLcPTRR6O0tBSLFi1Cly5d+KJkEvWWtaaJoUOHYtq0aXjppZfQv39/3HHHHfi///u/erNh55xzIe6//yHcffcfMWjQILz77ruYNWtWrZfPE+IZLRpLqXjwBgGoADCs5jgbwG4AUxzHSdf/1aioqmKPe0YdSUQrz59v3VoaORLYu9f67Ih/FBayOyTNZJJ+UVTE+QkzmsEcPZrjht55J7Dn0mHQIJ5aajLkYe5cTptgeWVmcTHnwMtoMfXAgUwgQpimHTmS+b7lbYr94dNPgW3bQvGyilAHg+PCHwoKOD3U3r2BPZcO6RpL1jBvHi8ms7xEXvzfjPqSvOLZIkS6lDA8eMXFxTjqqKMwadIkrF+/HmVlZZg2bVr9lbAZ5r+TccYZZ2Dp0qWoqKjAypUrceONN9YuoBDbk1133fVYu3YtKisr8cknn+CUVHLaOA7zhyZE8L4gog9rjtkARESw/T1bLGDRItZRGWf4GD2aVyxZzg81fHgTmlpau5ZNa8vpUQD+v6eckmFMt1gIEsKK55BmR/yhsJArz/IimEAGpViMbxCCsVRQwAZeuns8B4qMghf9I+NQB4GCAjaW3n03iMcyom9fzm7QJPTdzp2cbT6EeOPCQt51LO1QB4CXi3fvHoqxJAiebX1XXFyMAQMGuF8Uj/MgadkTLjyWGfPIWIwX/333XaaPpL+9n4scpq0DACxTvtpd85qJPdhoKCpiOch4Jy+xQiOkqaUQ+qw3QhqUNmzgKYuMi2nWLO38UKlCTC01ejLdzZs5pi0EEl5YmGGog0BBATf6ypWBPJcJJ53EyrnJ9KW+fXlAtohAQh0Arrzc3FC8QyNHcvU0urH09tv8EJb7UiLBoQ4ZFyNWzRcV2U/FEcI0LRFh2bJl7gRPuNWys60TPOEozHjyynGspofy68HrA6AlgE+V8yIY4ZPAnihEFBZyOEm7dhne6KCDeIeAEEYLMTtia92EbxQWclC4772O0oNYxxGIXi0oAJYt42z8FiGetdHJQ6CVZ0ZVFceGBsL1hbFkufLE5hmN7h2qrmbykPYqL/8oLOTZRcPCQf9o0YKnKkOKw9u6FfjiC+tFuWPBAl7CbzHNEsAe1u++C6gvFRSw2/ZTddgOFmEstHAcB7t378aECRPMF4n4O8shQ0DdNrcZ88hYrC49lAX4JXiDal6/cBwn23Gcto7jnAPgQQBfAnjexsPZRFkZE6XAxr6CAlbUlqNNR45MbWrpyiuvDCT/UD1kvMzLPwoLmYAPHBjAzYTWtJyJ+PDDU59aGjRoEAYFvbelWAQjsrtbwkcfBRTqAPC8VM+eoZGHRYs4B3Sj4ZNPeOFPSF7W4cMDSl9XUMBsZMeOAG5mRpOJwysq4pynalLdgCHG+cAMWvmmliBvW9aoCGze1B01eZSDK+bkkxud4IkRYjaAagA7AbwA4C0AI4ioAgAcx3nZcZy0o7lriOMCh/Gu4ziZRCG44v33mSgFNsM4ciSwezcrbIs4+eTUppasELzly3n6z/L0rOCRI0YEtO3j4MFA69ZNcmrJGsEbPjyURTCBhDoAdVNLCxZYj9weOZIVtWE7ynAgjI1AKs+M9et51jtQg5bIurF08MFAr16N7A3fsoVznYbgZS0q4kkRsSg0I3Tvnl5urTQgUro16k5LiQTqbSthsRggQLUq0kNZyKWbigdvPYChAIYAOBJAGyK6kIg2A4DjOEMAtCOitJO6ENEuIhpBvKPvAwDuSvdeXigsZKE86aSAbig6v+XO1LIl79Po16Ldvn07tge934/4j5YJ3tdfcyxbYMVkZ/NAGoI7QEwtff65v+sDz1f4zTehLYIJLNRBoKCA56lqNha3hWHDeDOaRvUOFRXVpVqyXAwQYF8aOpSVUUhhKW+9Fc5KTS32xVAHATGzlEpurTQQZj48LUT+u5CmZ4GACR5gRRGlQvA+JqKPiegTIvqCiNQEA9cAeE4+4TjO7xzHmec4zkLHcb6oee1gKsRxnD84jvPbmo8zAIxxHOcAn8+YEoqKmCgFtuK9Y0dW1CGRB7G9qBfOO+88nHfeecE+QFERm9UHHxzsfRUEOl0hUFDAuaG++SbAm+qLAfyLw0svvaTdrDtthDQoiVCHwAclwPo0bX4+Z49pNO9QZSWvRA3JM9ShQ4B5lHNy2FgKaSq9pMQ63zcjpFCH//2P+1Pg+q6sjG9uEYLsNNo0rXAdWp6eBSys4xg0iK1jC4rIk+A5jtMZQBcAXt2rAIAqRUPAK2zPJKIjAGwBE0ETjkHNgg0iqgav2g3Kx1aLkhImSIE7oAoKOCt1RUXAN64PMbVkOaWbHokEm9MhbU/WrRuv+A8MIa2A6NmTw8kazTtUVMRGh809bsH8pLo64EGpc2egf//QVjyLNHSh43//Y11hmYQTcVUGFuogUFAArF7NbnaLEPy30frSggUc6mCZPBQWcvsEOlt/6qnWc60BTHbEtmWNgsDdanqIaehAi7GYW8tPdxdmixfBOxBM4GQMAXATEQlf0zIARg8emOAtlj5vrrlvoHj7bW6kwPXqyJGssD/4IOAb18fxx7P3oVE8D0uW8PSZ5UEpmWSFntHOCDoceSQTiJA8rY0ytSRio4Ryt4iiIlbsmv26M0NBAbPHEIwlwFqWAncUFXH7pJIcNQ2sXs0xeIF32ZCC+Lt04bi0RiF4337LFRhSqMMxx/A2soGhbVu+aUj58BotDi8eDyX+zto6jlGjgHXrgFWrAr2tn9oYVPPqRfDKIOXDcxznQADtUJ+wHQ/gY92Pa65PEtEm6XQ+gMBzzRcVcVq0448P+MannMJSbrkz5edz7GCjKDwr86YN8fnn7FUJvBixAiKETMRiamnxYu9rA4W1Eb0hCgu5H7VoEfCNR41icmc5E/GQIZwypVH6UlGRhRG9IayFzPbvD3TqFJqnNdVtGgOBCHWwPI2+dy9vGW2lyxYU8M0tb9MY5rZl9SDnv7OMRKJuA4pAYclY8nxMIrqPiBwiWu9x6acADpc+DwWQC6A3ADiOcy6A7gBervn8tOM4Z0vX107PSugHYKnXM6aKoqK6jQ0CRevWnCcpJIUXQkq3higsZMXeubPVYgLZGcGEkSPrkgBbRKOleLBaeXXYtYvJq5XZ+pCMpexsnn0LvY3KyiyO6PVRVAQceCCn6gwUYsVzSMZSWRmn5AkVInixf3+rxSxcyMTISl8qKOCbW14uHouxSIQ+YxH4slY95HUcgWcH690b6NEjfIKXAl4BMFb6PATA3wE86jjOMgBXABhTE1snvpdJY73pWcdxegHIQsAELx5nYmRNr4rkWrt3e1+bYTGAd5aC6667Dtddd10whYqg8JA8Q717cw7pwBHSpvadO/OMsJ9ihgwZgiEZZ6CtQVERp0jo0yeY+xlgLdQBCN1YWrmSnZ6h4b33OHjRsmfIWqiDQEEBG0uWMxGLbRpDDUsJPE+TGUVFnGLPypbRJ57I3owQ8+GFuvNIgPvPukHkUbZSjJweKsA57iCldjKA0xzHEetShwJ4g4hGEdFRRDSBiDYCgOM4HQFsIKJF4sdE9Fsi+p10v+sA/KkmZUpg2LOHtZw1jlJQwAJneQXEMcfwGOhFHi688EJceOGFwRT64Ye8O7vlBRbxOJMHa8WIFcBNaGqpf//+6B+El0DE340YYT0JtbVQB4GCglAyETeKp1UELwaWp0mPZcs4F7FVfQdY70vt2nEay1DbKORQh2HDeFODwNGsGXDCCaGseM7OZhUUKsET8XchbU9mjUcWFPCex8XFgd0yMIJHRHsA3AhAJCceDEO8HRFtI6LRHrdcD2CD4zgrHMdZ7TjOreoFNQmR/17z/aeO4wz2es49exy0acPKwgpCSq7ld2pp3bp1WLduXTCFhhQUvngxO0Ct6tWQkmsVFDAn/vBD9+tKSkpQEgSRsRa82BCFhZaT+4e0XPyoo3gWLnSCZyV4sT6sh8yKTMQhLVoKdZvGkFIN7dzJa9es2s0FBcDSpdZ3Hgk9XYql+LtHHnkEAwYMQOvWrdG6dWsMGzYMM2e+Acep45G///3v4ThOvaNLJhmqLViagfqdiaiQiD6ted+BiHZmcLtHADwMnvY9AsBFjuOoG5+OBe+T2wecfuUxr5uWlsbsrngPMbnWyJHeWQouu+wyXHbZZcEUWFjIUekhBYVbnb0KKZnu8OHMib367GuvvYbXXnst8wJDir8Ts3JWB6Vhw3hqyfJuCSJLQWib2os8TSGR8MMO4xg8axg5kl3uIew8Ul3Ns9uhQORpshzq8NZbLHdWxSGk5eLCkRYawbPkVjvwwANx//33Y/Hixfj4448xYsRIXHjhWVi+/NN6jsK+ffti06ZNtceyZcvSL7RbN6Bv30D1nd3AgsxwLIDVRPQ1EVWBt0abqFwzEcDTxPgQwAGO43R1u2lVVQh6NaTkWqFOLe3Zw3m7Qsp/Zz25f0g7jxxwQMhTSwsWsEelZ0+rxYTCI4WxFJJ3aN06zoFtHQsXsmfScvxddTU7P6132ZEj2VgKcGpJh5NO4nE8lL4U4n7bRUXsyD32WIuFDBnCWf0Dqrw//akhD1mwAPjzn+vy4dkwlrZv3w7HcfDggw9i6NChyG/ZEocNHoy5AevxiRMnYuzYsejduzcOO+ww/N//3Y2WLVvh44/rp0DLzs5Gly5dao+OmQ5aI0Zwp62u9r7WB5oywesOQJ5bXF9zLtVrGsC6wgtpU/v+/ZkEhRJ4LJZ5WWbHFRUhrePo0sX/CogMMXIkT9Hu3Wu5IJGEOqSVmQccYD25P/+XpUuBoLfb0xQDhEQeioqYvFoLXmR8/DHbZdY3yggpE3Gq2zRmhBBDHYqKOOolJ8diITk5XEhAlTd0KHDBBXVD3IIF/HnoUJ6mJbKTD29JzYzLww8/jPvuuw+ffvghBvTvj4svuQTl5fUzqt1zzz1o2bKl67HQx8riRCKB5557AXv37sGJJ55Q77uvv/4a3bt3R69evTBp0iR8/fXXmf3BkSO50wa0p739xDHpQ2c2qTaBn2vgOM41qNlBIze3D4qLn8XSwJOvSEgk0LJZM1Q//jgqA2LiJhxySDPMnBnDM8/s1RqaW7Zw7ulnn33W9T579+5FC5d4oLznnkNudjZKv/0W8LhXJvjiiyxUVLRAVtZePPus3SmfvO7dkfvWWyidMkWrXb3qxD+yUF3dAnfdtRcDB+r/0/s1+d5yMtDysTVr0PK771Cel4dqS20k6uT111vg0EOTeOGFwNNU1kOsuhotAZT94Q+IH3ectXKIgHbtWuDJJ5No0SL1/5SKrLSYOhXJQw9F+dSpKZeTCqZNywWQj+3bd9vssgCAFl27IvnMMyjv1q32XHD9pw4dO+Zh+vRcPPFEqdXwxZw330QzAKUlJaCAK0+ul127HCxf3gpHH12BZ5+1m+Qv94ADkP/ll+iWSKA6w3HppJOA555zcMEFWbjmmiSeeCKG555L4KSTqJbYVVX5nzklIjg+PKWffPIJsrKyMH36dPQ97DCgogJ//OMf0e+oo7Bs2TIcLVmcP/zhD3H22We73A3o3r27sS6WLVuGU045BRUVFWjZsiWeffZlHHHE4bXXH3PMMfj3v/+Nvn37Ytu2bbj33ntxwgknoLi4GO3bt/f1v5PJZP2xefdutAZQ8cADvn7vCSJqkgeAYQDmSJ9vA3Cbcs0/AVwkfV4BoKvbfQcOHEihYPx4ot69rRfz+OO8ZunLL/XfDx8+nIYPH+55n23btrlfMGgQ0amnpv6AKeLOO4mysohKSqwXRTRtGlfe229rv/asE5/Ys4coJ4foV78yXzN58mSaPHlyZgX96U/8fzZuzOw+Lti2bRt9/TUX8/e/WyumDlVVRC1aEF1/vfWiLr+cqGNHokQi9d/6lpVt27jy7r479UJSxIgR3G1DwfXXcztVVdWeCqr/yFiwgKtv+vTAb10fEycSHXKIlVvL9fLMM/x/Fi+2UlR9fPIJEUCLP/44sFveeSc//5131j+/ezfR3r3+75Pw2ekuvvhiOuuss/hDVRVRSQl9+/XXBIAWB1yJlZWVtGrVKvroo0V08823Uvv27WnZsmXG60tLS6ljx47017/+1XcZ2mfu359o1CgC8DFlyKOa8hTtIgB9HMfp5ThOLoBJAF5XrnkdwOU1q2mPB1BC9XfCaDyEtE+jV0q3X/ziF/jFL36RWSE7dnB8TQjxd2IdR+vW1ouqWwFheY67RQteL+BWzLBhwzBs2LDMClqwADj8cKCraxhqxghpHQcj4KklN4wcybNyn31msZC33+ZXy/Om5eW8CUgobQRwQXv3clobixBJCqx22USC28n63DaLddu2wMCB1oviQtq2DWzudMEC4LHHgDvv5Fc5Iik7204+vOLi4jovXc0Ci0WLFyM/Px99+/atd22mU7S5ubno3bs3jj56CH7/+3sxcOAgPPjgg8brW7ZsiSOPPBKrMt1ubMSIwFYSNVmCR0RxAD8BMAfAcgAvEdHnjuNc6zjOtTWXzQLwNYDVAP4F4PpGeVgdQgrqOfRQ9wTY48ePx/jx4zMrRPRcywSvtJQz1YfAIxkHHBDaPo0jR3L6l1279N/37du3gYJKCSKiPqSYoc6deX/QUDByJPDll8DGjdaLASx32aIiDiYLKqm1AR98wHnJQyN4p57Kr5b1XV5eCNs0FheHst82EFoeZUZWFrdTAARPxNy99BLwhz/wqxyTJ6Zmg4zDq6iowIoVK5AUN63ZVuKhv/0NkyZNQnMlieC1116L4uJi18NPcnmxUJcoicrKStfn+/LLL9E1UwN75Ei20AJAkyV4AEBEs4joMCI6lIjurjn3OBE9XvOeiOiGmu+PIiJt3r1GQUgrILwSYK9YsQIrVqzIrJCQBqV33w1lHUd9FBTw6mDL+zQWFLA1a8pSsH37dmzPZCHBokXsQbHsdQhxcWEdQkrx0KMHZ8Sw2mWLijh5oNWIei4mK4uLCgXt27OHKARPa0EBe1lrwouDRyh5moA1a4C1a0PWdyNHBrICYtEiJnWiikaM4M/CgWsjH55IQfL8889j4dtvY8WKFbjs6quxevVq3HvvvQ2ub9euHXr37u16NGvWTFvWrbfeioULF2Lt2rUoLl6Gu+66DW+99RYuueSS2mtuueUWvP3221izZg3+97//4bzzzsPevXtxxRVXZPZHxbYtAaBJE7x9GmJT+xCSa40cyckydQtHfvzjH+PHP/5xZgUUFrLQhTAo5eZy0vXQENI+jccey1nqTePfzJkzMXPmzPQLKCxkmbM8KK1alYXNm0MelAYOZG9rSOTh7bct5fHasIE9kaNGWbh5fRQV8YrGUEIdBEaO5HnhigqrxVhPUlBYyO7p/SnUQUDohwwF/Fe/aqhqRozg8wB7JGOxYPtRcXEx+vTpg7vuugsXXXIJjj75ZJTu3YtFixZllmBYg82bN+PSSy9F3759ceaZBViyZBFmz56NsWPrdmNdv349LrroIvTt2xfnnHMO8vLy8OGHH6Jnpimq2rYFBg3K7B41iAieTRQU8LRSph40D1idWlq/njfqDCkp6wkn8M46oeGEE5hVWva05uayN8UaRyksZKXgc/VWuli4kEl+qIOSmFoKKQ6vtJRTjAQOIWOWYxB27w451EFg5EieF/7gA+9rM8DgwUCbNpa6bGUlG3sh5fvs0oXDZkPDEUewIWg5KTUQfD684uJiHHXUUZg0aRLWr1qFss2bMW3aNHTv7pkZLWVMmTIF33zzDfburcRXX23FnDnzcfrpp9e75oUXXsDGjRtRVVWFDRs2YOrUqTgiqLiVgAz1iODZREj7NHbvzgmwrYx/4qaWFV6I6zjqo3lzJnkheYe++ALYFPQyoL172XMSgmdo4cIcHHwwcMghnpcGi5Ej6+a0LMJqSrfCQt4T7aijLNy8DgsX8sAaKgkHeDFMVpb1vmSV73/wAcc/We5LjRLqAKB2ry0bKyAUiGnaoLhkcXExBgwYwB/icWaQlitPeCCt7XxlQkCdNyJ4NiF2FAjJ8xBgAuw6hDQovf12CNv1mFBQwOzS8j6N4r8FPrX07rvc8JbZcSIBvPdeTuO0kbXKq48OHXhGOHCbjIg3ex850npEfVERL0bIdFF2ymjdmhcthaTvvv7aAt8vLOT2GT484BvXx/LlCD/UQSAWs5eJWIIgRUFM0xIRli1bxgQvmeTnD4F1JRJMVEMl4QAwZkwgt4kInk3IKyBC2NR+z56AsxQIMzOEZV6FhZxOZOhQq8XoIQKPLQfxDxrE4RWBk4fCQp4DPumkgG9cH0uXAt99F2ucQemII4BOnULztL73XsChZCtWcLhGSPF3oYc6CIwcyfPDISxaAiz1paFDeQ7YIkKaGNFD6HLLY5LjMDkKohjHcbB7925MmDChjjEKF6ElENURvNARUKERwbONkSM5N4bVrTPqshSoCu83v/kNfvOb36R301WrOAYvpHgU69v1mDB0KK8StjyV7ja1dMopp+CUU05J78bz57O7xmZqf9Q9dwjpwRpCLCAJadFSZSXPegeGkOLvGi3UQWDkSB6A333XajFHHMGpegLl+yEGLxYV8QTPwQdbL6oh5GlayxAEL9AuG4/z81t2OjTa9GyAiAiebQh3h2Xy0L49e4hUhTdq1CiMStdrIJ7Zsstm40ZeXNhog5JIphtCPryCAp5WUrcsPOSQQ3BIOoFt27eHNqIXFQF9+sQh7UYVLkaOZGFZudJqMSefbCGUbP58hBG8KGawG8XLCgAnnsj9ybKn1UqSgnfeYTYSQqhDSFtGmxH0CgiXYoAAuaRwq4UQfyc8j43iwQsIEcGzja5dgX79Qptaev/9+jkSRULHtFBUxMnBevcO5PncigEaWeEVFDBxWL/eajGmFc+bN2/G5s2bU7/hggWs9CxP/VVV8fh38sl291Z2RUhxeK1bc1qbwPi+GNFDIuEhpKw0o3lz9iaHpO82b+Z4tkAwfz5vk2E5T9Nnn2Vh165G1ndZWaHE4QW90KI2/i4E1lWTRzn8+LsAERG8MFBQwKNjld3NpEeO5CLkXU5uuukm3HTTTanfLJnkgbSgwLqEFxUB7dqFtF2PCV57vgUEsZOYWsybb76JN998M/UbFhYCrVpZD14UeZQbleCJbVtCCuJftIhn7TLG4sW8M0JI8XeNFuogMGIEsHgxnO++s1pM4JMjhYUcx5qfH9AN9Vi4MBdAI4U6CATuWtNDxOEFVkxI86bJJB/78vQsEBG8cFBQAJSV8Y4JFnHyySyQgYx/n37KAT2WzUwi1quhbddjwlFH8RLKEHYeCXRqSSShtqyJior42U84oREJnojDM23bEiAKCtjr8M47AdwspFCHDRt4LUejeoaA2kVLOZbz4fXqxUcg+m7LFt4eIwQv68KFOejXz3oeZXeITMQh5cMThCljJBJ1z24R+8P0LBARvHAgNrW37Hlo1YqnlgIpJqSg8K+/Br79tgkMSrFYaEH8BQU8nnzxRYY3+uYbYPXq0DxDgwYB7drZrRtPjBzJcYeffWa1GLGpfSB9af58NiA6dQrgZmaEtGW0N447DmjWDDmWd4cBWBzeeisAnhLSstaqKuDDDxsp1ZAK4VrbV/LhEdXNm1pGSAt1rSMieGGgbVtOvx7SpvaLFgElJRneaN48nk+0HFHfJOLvBAoKOAZv1SqrxQQ2tRQSCS8v59jORicOgOVMxHXIz+f1Ahm3UUUFx0yEUHmFhRzqIHLBNhry8oCTTkKO5ZW0AFfrd9/xLHhGKCzk7fAGDw7gqcxYtAgoK3Oahr4TXv+Q4vAynqYVDDGk/HchrOOwjojghYWRI4EPP+RAJosoKOD+mtHUUmUl32D06MCey4SiIp6q6NvXelHesLrnWx169uRwsoyLKSzkXBFHHhnIc5nw3nvseWgSg9JBBwF9+rBXzDJGjuRIha1bM7iJ2JvVMsELMWWlP4wciWyRzdduMQAy7EsiCfWIEdZdNhzqQLVprRoVgTEvdzhO3aLdjBDSvKmYTt7XvXdARPDCQ0EB7zZg2ao9/nj2PgjPwz333IN77rkntZuIpbiWCZ4YlEJYx+EPvXtzEH9InlZ5aqmgoAAFqZAAEbwY0iKY7GzreZT9Y/RorjzLi5ZEc2SU/3r+fB4pLO+M0GRCHQSE7rBMxIV9k1GX/fprDncIaZXzUUcl0K6d9aK8IWLZQsqHl3EcXjweSvzd/pD/TiAieGEhpPxQ+fk8EItiTjjhBJyQ6rL/efNYui2bmZ9/zt6RJjMoiRUQIQXxl5TUTS316NEDPXr08H+Dzz/nQL6QBqVjj+UYzyaB0aPZE245iP+YYzhlSkbkobCQY9IsV16TCnUAgKOPRrJdO9YlllFQwHZzZWWaNwg51OHkk+0aJilhX8mHJ+W/u+GGG3DOOecE9mwqEolQ8iiHgv3gL+wjaNGCI7dD8g4tW8bk6f3338f7qabknzePXYHft0EJYCW/YwfPzVmE4M6iDtatW4d169b5v4GQI8sLLEpKgI8/bmJtJKbSLJOH7Gx2vKVtk333HVdeCCR8/nwOl20SoQ4AEIuh+pRTuI1C2HmkvJwjYNJCYWEolScyZZ10UiOuRFchmJfl1bSxGJOmtIuR4u/++Mc/4umnnw7s2d555x1MmDAB3bt3h+M4eOqpKQ3y3z366KPo1asX8vPzccwxx2ChZgGRn2vCRkTwwkRBAbtsdu60XgzAA9Ptt9+O22+/3f+Pd+wAPvkklPi7uXM5Fq1nT+tF+UdIO4907gz0719XTGFhIQpTKXP+fJ5SPuggOw9Yg6Ii1q0hiIN/tGnDXrEQvEMjR/JC5W+/TePHb73FnuAQdkaYNw847bQmEupQg6rhw4FNm9jbbBEiSUFaXTaZZCEfNcp65c2dy+tPGjXVkIoQ4/AyWrQrLWtt27YtWrZsGdiz7dmzB/3798ff/vY3NGvWDET1p2dffPFF/OxnP8Ptt9+OJUuW4IQTTsDYsWPxraQU/FzTGIgIXpgQm9q//bbVYo45hhfuzpmTxo9FmhDLI3plJc+EjhljtZjU0b07W/IhJNMdPRpYuLD+ziO+EI+zDIXgGZozhx25w4ZZLyo1jB7N3jHLxpJwkKbFJQsLeWeH448P9JlUfPIJb3d92mlWi0kZ1cJNbZmIH3AA79yRVrjfsmWcdiekvnTyySwSTQaBZyI2Izs7g80zatKjrN+wAY7jYMWKFYE917hx43DPPffgvPPOQ6xmXlYmeA888ACuvPJKXH311ejXrx/+8Y9/oGvXrnjsscdSuqYxEBG8MHHssTxVG8Km9qNHs0JJ2VqaN48DjyzvjPDee5z7+fTTrRaTHsTOI9V2Le0xY3iBZcp8f9EioLTU+vQsEcvQyJGNvDOCDqNH13lfLOLII3n2Li1jqbCQR/S8vMCfS8acOTxONykvK4DkgQeysTR3rvWyTj+d88jv2pXiD0OKv1u/nh2ZTVLfBZqJ2L0YII1pWsEKs7NRXFyM5s2bo0+fPvUuueeee9CyZUvXw++UqRx/V1VVhU8++QSnKdbTaaedVhv65OeaxsJ+sE5kH0JuLiv8ELxDp58OvPQS0K3bIWjZ8mvvHwDckebN4xgny0uI5sxh0tCo2/WYUFAAPPooshcvBs44w1oxJ5/Mi2LmzElxm7b58+t2dbCIVauAtWuBX/3KajHpQaz6mDcPOO88a8U4DhPxV19lJ4LvbrFhA2+SetVV1p5NYM4c9tp36GC9qNRx2mnAv//NLnuLRPf004H/+z/uGuefn8IP589nEtq9u7VnA+qcmE3NywoAyM7GTTcDxZ8DsDzFLy9gGDQIeOghHz+SpmeXLl2KAQMG1HraBK699lpccMEFrrfp7tHGwhkip0fZvn07EokEOnfuXO/azp07Y36Ny9jPNY2FyIMXNgoKWPFv3Gi1GKFIdu1KwRP31Vc8oofgCpgzhxcWBxhKERxOPRVwHOuJWps14/ihlLegLSxk7di+vY3HqoXwWjVJr0NODrsW5861HsR/+um8XuKjj1L4UUieoZISXlzQJNsIYF0ilo9axHHHcWhmSp7Wykp2n4ewE8ycOZzv86ijrBeVOmIxAI71fgQwuUu5GIngFRcXY9CgQQ0uadeuHXr37u16NGvWzLUY4VnUrZ51lPhMImpwzs81YSPy4IUNofDnzwcuv9xaMQceyNNLLVpcioce8hlAJbSjZTNz0yZg6VLg3nutFpM+2rUDjj4auZZjJQH2Dt18M3DkkePQo4ePKZLdu3l++xe/sP5sc+bwOo5DDrFeVHoYPRqYPp0Nk969rRUzahQr/TlzAN8Zh2bP5q3JNINRkBCLYJqkZwhgYyk7u25mwBKys1kc3nyTCYSvcfWddzhOZOxYa88F1C2CGT++aS2CqYXj4KG/JoB4JVvcFh8yHucqb97cpzdcbE9Ws63E0qVL8QuN7vOT73X27Nk4+eSTXZ8NqE/wOnTogKysLGxWEnZv3bq11mPn55rGQuTBCxsDB/ISytmzrRc1ZgxQXNwKffoM8veDWbN4oFTiG4KGCMlpsl4HADjtNGQHsuebO0QdLFnSCV26dPH+wfz5rInGjbP6XGIRTJNuI/FwKbtAU0O7duwh8l1MPM5scOxY68m0muwiGAHxcJbbCGB9t2FDCot2Z8/maWPLoQ4icUKTJeEAz0umvQIitWKAFNZ0JJMQy1r37t2Lr776SuvBu/baa1FcXOx6DBkyxLUo8Uwyv83NzcUxxxyDecpCoXnz5tXml/VzTWMhInhhIxZjxT9njvWVS9nZnHepZUvCwQcDzz7rcnF5ObsDLBGHP/2pbjP0OXPYubFzJ59vkjjjDDjxuPUVgIcfzplOpk7di6+/9hErOWsWz0VZHtGb9CIYAWGMzJplvajTT+e1LTt2+Lj4o4842t8yCW/Si2BkjBsHLFnCrnuLSJnvz57NHkbLy1rFxEhTWwRTDxlnIvaHlBftSttKfFqTm/QozTx3JlO0e/bsweLFTAKTySS+/fZbFBcX16Y4+fnPf44pU6bg3//+N5YvX46f/exn2LhxI6699trae/i5plFARE3uANAOwDwAq2pe2xquWwtgGYBiAB/7uffAgQOp0fHyy0QA0bvvWivimWeImjfnYsTRvDmf1+G755/ni95808rzFBURdehANH8+v44axa9FRVaKyxzV1ZRo04boqqusFzViBJHjJAlIUs+e5jaiZJKoa1ei88+3/ky/+hVRTg5RaWn989u2bbNedkr42c+I8vOJ9u61WsyHH3L3eP55/ff16uWOO4hiMaKdO60+08qV/EyPPGK1mLRRWyeffsoP+u9/Wy+zf3/WLZ74+mt+pocesv5MJ51ENHhw3efG7kOLFy/Wf1FaSrRnj/XyKyqISkqIEom6cwn5g4w9e2qV0GOPPUaHH3544M+zYMECAtDguOKKK2qveeSRR6hnz56Um5tLgwcPprfffrvBffxco8LYFkTkl9O4HY1O5rQPBfwJwK01728FcL/hurUAOqRy7yZB8L77jigri+i226wV0bNnfXInjp499deX/fCHRM2aEZWXW3umoiKiNm34OVq2bMLkrgYVZ51F1LlzfU0UMJ55hig31ycRX7KEL5g82drzCAwYQHTqqQ3PN/bg1ABz53KdzJhhtZh4nKhdOyJJ59dDvXoZPJhHdcv429/4r69ebb2otFBbJ8kkUY8eRGefbb3MX/yC+5MnT3nkEa68lSutPs/Onazqb7+97lxj9yEjqSgvb8i8LCAe52IqK+vOaQleMskXWhyTBPbuJdq9m4sME7YJXlOdop0I4Kma908BOKvxHsUC2rThDWMtTi2ZEmhrzxMhV2xcn59v7ZlGjKhLB3LNNU00RYqEqtGjeb/XJUuslXHHHTyNLqOsjM83gJAXy9mhv/2Wd2qzPMMYDE45hXNLWp6mzcriGCrP3JKbNnHQleXAfQCYMYOn+A891HpRmcFxWJjmzctgw1h/GDOG+9Nbb3lcOGsWV5zleOPZs3mRxfjxVosJBmKeP6RtyzynaaXpWZug+us49is0VYLXmYg2AUDNayfDdQRgruM4nziOc01oTxcExo3jpaQbNli5vWkHK+35lSuRtXat9RF9wQKO7TrwQODpp+ti8poqqkaO5B7/xhvWykiJiM+aBQweDPhZjJEBZszg1wkTrBYTDPLyeJnrG29YT/MwdiyweTPzNyNEAJjlvrR7N2f42CeIA8D5JPfsASynHhI7Rbh22YoKq/HGMmbO5HjjY4+1XlTmEMzLcoJ3x2Ey5bltmZQexSakbW73OzTaX3IcZz4A3Uil812YcCIRbXQcpxOAeY7jfElE72jKugbANQDQrVs3bN++Pa1nDhJZw4ahLYDSl15C5WWXBX7/W2/Nxc9/3grl5XUmSbNmhFtvLcX27fVdRvkvv4yWAHYedxySlurm3XdzcNVVrZBIxHDVVXsxeHAc55/fCv/+d2nT2nxbQklODloPHgy8/jpKrr/eShndu7fF+vUNFVj37gls316Xlt/ZtQvtPvgA5TfdhDLL8jt1amscckgW2rffBbWoEsuritNB3vDhaDV9Ona9+y4S/fpZK+e44xzEYu3w/PPl6NmzrN53ol5aTZuG7M6dsat7dzSovAAxfXouqqtb4+STv8P27fa3mUoH9WRlwAC0z8tDxSuvYG9KWb1Tx4gRrTB9ejbuumuX1iOTU1SENuXlKDnhBFRbbKPqamDWrHYYN64KO3fuqT3fFPpQ0rBa1qlZAUHWd7VwUF3tIB4nZGWR9pmcGrcaiegVS6iuZiHJyiLbi4i1sMpHMp3jtXEAWAGga837rgBW+PjN7wHc4nVdk4jBI+LJ/oMOIjrrLGtFPPMMUbduVQQkCSD65z8NF44aRdV9+1p7DiKi++8nuukm7qmff87nior4fFPFtm3biO66i8hxiLZutVKG78UwYhHM++9beQ6B3bs5hunnP9d/39jxQ1qsX891E4IwnXIKxyeq2LZtG1F1NQeZ/uAH1p/jssuI2rfnIpsqGsjKmDFEhx1mvdwpU1gcPv7YcIFYmFNWZvU5Fizg55g6tf75xu5DbnFfVFXFcW+WBUuE14kmaBCDpwvUs/Qcu3dbX6NlxPc1Bu91AFfUvL8CwHT1AsdxWjiO00q8B3AagM9Ce8JMEUJcyiWXABs25OCDD9hC0e4aUVoKvPMOqixnc//Vr4AVKzjsRThZRoxoottgyTjjDOZdlvJ4XXIJ8MQTQM+e/Dkvjz9fcoly4RtvcEI2y3M9c+dyDNM+MT0r0L07B3danEoXmDCB4xPXrtV8uXAh5020PPUXj/NfHTduH5tWOuMMYOVKYPVq68XEYpwDuwGIgGnTON7YY2eDTDFjBu9O2aTz36kIMV2K6zRtSPF3Upq9/RJNleDdB2C04zirAIyu+QzHcbo5jiOiqTsDeNdxnKUAPgLwBhHZz6YZJM48E9i71+retDNmzMCWLTPQqRPw+uuaC2bPBqqqUGVZC+3Zw39zwoR9LJD16KM55k1becHgkkuAOXNW4Oqrd+hzGFdV8WgxYYL1eJQZM4C2bXkbuX0KZ5zBAZ47d1otRhBfrTi8+iovUrK8COaDD/hv7jPxdwJiX2fLRLxDB5ZfLcErLga++QY45xyrzwBwXxoxoolux2hCyonq0kd2tktu5epqfg7LicJD4pGNhiZJ8IhoBxEVEFGfmtedNec3EtG4mvdfE9HAmuNIIrq7cZ86DYwaxZnep061VsRf//pXPPjgXzF+fC2Xq4+pU4FOnRA/7jhrzwDUOSr3uUEpFgPOOosXOJSVeV6eLj744AN07vwhEgnNJicLFrBnyPKglEjso54hgNsokahbIWIJffqwB7oBwUsmgddeY3LXooXVZ5gxgxc8Nukk1Dr06gX078/1ZBkTJ7Kndc0a5YtXX+U+bVkRrVwJrFq1D+o7gDt/Mml9VwuhYxqs6RBlh6CE4nEWB8s8stGwn/6tfQR5eezFmz7dusU0cSKvvHtHXoJSUcEj+tlnh+IZOuAAzg6zz+Hcc5ncpbSTeero1Wub3tP66qtMGiynwv/wQ14XsE8OSkOG8BLxV16xXtTEibyC9bvv6s5lL1nCK+JD8gwNHw60bm29qOBx3nmshLZssVrMxIn82qAvvfYap9bp2NFq+cLOOPNMq8XYgUiXYnk1bSxmcBaKci1vz5JMsk24zxmzKSAieI2Nc8/lUXXhQqvFiJCTegpv7lyeIg7BMzRzJqeZaNJbKpkwfDjHv1n0tAJ1joV6ntZEgmOGzjjDao5CgGUjO9v6DKMdOA73pblz2ZKxiAkTeFCSU+/lvvEGV57lEX3lSuDLL/dREg5wGxFZ9+L17g0ccYQyTbtyJW9Ue/bZVssG+O8NHFgXW7tPQbi0LBM8oM5ZSCTF7YTkVhPEcp8ck3wiIniNjTFjmHlZJg/Nm7MDaNo0yfP+6qvsVrOccfjdd4Ft2+qs6n0OOTn88DNmWE/UKjyttYla338f2LqVB0aLIAJefpn3NW3TxmpR9nDuucyMZ860WsxxxwGdO0vkgQh5M2dy5bVta7Xsl17i1xAchXZw5JFA376heVrfeYe3BQZQRyrPOstquevWcTjo+edbLcYucnJCmaYV5KrWiyfcaiGwrupqtgv31+lZICJ4jY8WLZjkvfqq9c50/vmsfD74ACzdr7/O7gjLnen555lg7pPTFQLnncfMq7DQajEiLPPFF2tOvPoqT+Vb3hlh0SKOV7roIqvF2MWwYUDXrqF4WidO5OiGsjIAn3+OrDVrQvEMvfAChzkceKD1ouzAcbgvvfUWW30WIcIya4n4q6/WTeVbxMsv8+uFF1otxi5CnKaNxSSC52PVww033IBzMrRwZB65Ty36SxERwWsKOPdc3uLoww8Dv/V///tf/Pe//wXAg1J+PhMuvPUWm7aWPUPV1WysT5xoPfbcLgoKOOjJEnk4++yzcfbZZ6NZM+YJU6cClRXEg9JppzHrs4gXXuCUDpadG3YRi7Fra/ZsDj2wiIsu4iJmzADw6qsgx7Huov7sM55hnDTJajH2cd55CvOyg6FDeV3H888DWL8e+OijUEj4iy/yhjO9e1svyh4aMC97yMkBEgmH/RvxuKdb7Y9//COefvrpjMqUp2ffeecdTJgwAd27d4fjOJgyZUqD6x999FH06tUL+fn5OOaYY7BQCanyc4/GQETwmgLOPJMlzQJ56NGjB3r06AGAOcL48WxhJl8JJ3C/sBDYsWM/GJTy8rjyLC2IadOmDdrUzI1edBEvmv3g4U94zzLL83HJJE/9jRnDM/b7NM47Dygv1yxFDhYnn8zp9557DsCrryI+dCh7Dy3ixRd53DvvPKvF2MfAgcAhh1ifpnUc4OKLgfnzgd1PvconLRO8NWuYR+7T3jsBZl7hTdNW12wK6+FWa9u2LVpmmHumurqOw+7Zswf9+/fH3/72NzTT5EZ88cUX8bOf/Qy33347lixZghNOOAFjx47Ft9J+kl73aCxEBK8poE0bJlqvvBJ4Z3rxxRfxYu18HxOtnVurEX9xKufDsCyMzz/PpGGfS+mgw7nnMlv13Mk8dXz22Wf47DPO011QwLm89vzreVZ2liPq33uPF4Du8yQcYObVsaN18pCVxfX17azPgKVLUWnZe0fEBG/ECI7/26chpmkLC6UAOTu4+GJWqeVP/BcYNKguy7oliBjJCy6wWkw4MOYxCRZMtAhU5b16dv369XAcBytWrEi7PHn1LO83MA733HMPzjvvPMQ0nsMHHngAV155Ja6++mr069cP//jHP9C1a1c89thjtdd43aOx0HSe5PuOiy9mb83bbwd628cee0wRRODcZrORW7INuPzyQMtSUVHBcc3nnMMOsH0eY8bwNG2G0wM6fPzxx/j4448BsH678JxqDF35DOJjxwPt2wdenowXXmCev8+uzJSRlcVE/PXXra+mvegi4OL4U0hmZaPSspd1yRLOq7ZfkHCAA4LjcetE/IgjgLP7foHO335sXd8BTMKPOw44+GDrRdmHSDQc0jRtFlWDPFbPFhcXo3nz5ujTp0+98/fccw9atmzpeohp1VRWz1ZVVeGTTz7BacpGAKeddhref//91P5kI2A/zgCzj+Hss5k8TJlidVVrfj5wS8cp2LKuM9oMPx02E2/Mns07oe03g1KzZjyqP/008PDDVhORXXfIHHTGVrx16BU41VoprOxefpnJ3T6Vcd8NV14JPP44u1N+9CNrxQweEEePrGfwftszcHiHDtbKAZiEZ2fvw6tnVRxzDLOvyZOBq6+2WtSvuz6N+IosrD/hYhxssZyVK5mIP/CAxUJs4aabeJcPFWIvr1gs+NUIgwYBDz0EAMiJJRFDAtVOHnJcylm6dCkGDBjQwEt27bXX4gIPt2n37t0B1E3P+kn9un37diQSCXRW3OadO3fG/PnzvW/QyIg8eE0FzZtz4MYrrzArsoVt2zB4wwz8ly7Fm4X2V8926mQ9C0u4uOoqjvESczGWcMRHU7A91hEPLLe7enbBAl7MuN+QcID36z3iCODJJ60W48yfh06JzXhg+xXYtMmeKk0k2DN02mmcjnG/gOMAP/gBL+lfvtxeOYkEjvnyGbyJMXhmnt257Wef5b+1T6dHUSGIlHbD2ODgJKpBACqTOa5FFRcXY9CgQQ3Ot2vXDr1793Y9mjVrlnYWFkchnUTU4FxTROTBa0q46irgX/9il8oPfmCnjOefRywRx4y2V6D90/ZWTW7fzrNkV1+9n2UKP/ZYjuOZPNmed2jnTjgzZ2D50ddj9vwcbN3KRNkG/vUvTt1mOQtLuHAc7ku//CWTB1txV089hcQB7THzuzNw9LQqHHWUnWLmzuXojT/9yc79Gw2XXgrceisT8T//2U4ZCxYge/MGfNzvAbz4LHDHHXbSYsTjwL//zbHG+2QKmxpPmhZlZcyKWra0U3lEQHU1KJaFZDLmurvE0qVL8Ytf/KLB+XvuuQf33HOPazGzZ8/G0KEnA/BP8Dp06ICsrCxs3ry53vmtW7c28Oo1RUQevKaE44/nJKA2l1hPmQIccwyO+9FReP11zh5gA5Mnc07gH//Yzv0bDYI8vP8+kEGgryteeAGoqkK3269EPA785z92itm0iWMkr7rK+iYZ4eOyy3gOxlZf+u47YNo0ZF16EY45PhdPP51vbbHh44/zwooQMnyEi86dOYPA00/bC+R/6imgTRsc9JMJ+PLLmhygFvDGG8DGjcC119q5f6MiJ4dJmK1YvEQCDhGc3FwAZlHYu3cvvvrqK60H79prr0VxcbHrccwxQ1BdzeTR7zqI3NxcHHPMMZg3b1698/PmzcMJJ5yQyr9sHBDR9+oYOHAgNWncey8RQLRqVSC327ZtG23bto0/FBfzvf/xD/r6ayLHIbrzzrrrgkIiQXTIIUQnnxzYLRsFxjrZtIkoK4vo1lsDK2vv3r20d+9e/jB0KFGNnI4YQXTQQUTxeGBF1eL//o/FYeVK/78JUk6sY+JEoi5diKqrg7/3P//JlbdoEf33v/x27tzgi/n2W6JYjOj224O/t234kpUZM7jypk0L/gF27yZq3pzommuotJSoTRuiSZOCL4aIaMwYou7d/YlaY/ehxYsXp/aDZJLrUuinoFFWRsmSEqJkksrKiEpKeAxR8f7771MsFqvTkymiqorvXVVV/3xpaSktWbKElixZQs2aNaO77rqLlixZQt988w0REb3wwguUk5ND//rXv+iLL76gG2+8kVq0aEFr1671fQ8T3NoCwMeUId9pdMIV9tHkCd769fY0+o03EuXkEG3fTkREZ5zB419lZbBKZ/Zslqznnw/slo0C1zo580yirl2DJw9Ll3LlPfAAERFNnWpn/IvHiXr0IBo1KrXfNfbglBKmTePKmzEj2Psmk0SDBxMdeSRRMkkVFUQdOiRowoRgiyFiA8xxiNasCf7etuFLVqqrWQnZqLx//IPb/4MPiIjo5puJsrOJNmwIthhhLP/ud/6ub+w+lDLBIyIqLzczr0yQSBCVlFCyrIyIWC+VlBBVVDS89LHHHqPDDz887aL27GGemkzWP79gwQIC0OC44ooraq955JFHqGfPnpSbm0uDBw+mt99+O+V76BARvO8bwSMiGj+eqH17lsgMMXnyZJo8eTLRzp1ELVsSXXxx7XdvvMES8MILwSqdCROIOnVi4rgvw7VOBHl48cVAyhLWH112GVGLFtxexOPfgQcSjR4dSDG1eP11fvypU1P7XWMPTimhqoqoc2d2rwSJwkKuvCeeqD118817AydiVVVsQ4wbF9w9w4RvWfn1r9kj7uHtSAnxOFGvXkTDhtWeWr06NSLmF7fdxjb5unX+rm/sPpQWwXNjXpmgooIJnmQom4hYJqjhkYE/fqawTfCiGLymiF//mhPqBrAKcMqUKbxtymOPAXv2AL/6Ve13Y8bwVj6PPJJxMbX45hve6/1HP+Ktr/ZbjB/P8ZL33hvICrPi4mKsKizkpcfXXFO7aX12Nsf1zJsXbMjfY48B3brtJ7nvTMjJAW68EXjzTc5fERT+/GeOH7vsstpTV1xRgViM6zUozJjBcZLXXRfcPZskrr+eY1v/+tfg7vnaa7ytxC231J469FDOA/rPfwJVVcEUU1XFavrMM/fRxRV+kZXFR1VVcCtqifh+2dmc/64GubnBh/yJ9ra87XqTQ0TwmiJOPJGPv/41kODj3EQC+NvfmNENHFh7PhbjwWPhQuDzz30kBfKBxx/nznnNNYHcrukiFmOyXFzMyxwDwBHiPjfdVO/8j37EiunRRwMpBitXMucR992vcf31nK/wvvuCud+yZVx5P/1pvZUp3bsncdZZvJKyvDzzYoh4YWOPHvvZCmcdDjqIyfK//gVs3Zr5/YiYhB96aIP9gX/yE2Dz5uDyKz/3HLBly366uEJFXl7titdAUF3N91M8AWKHiaBIuMQjfS+u2G+QqQtwXzv2iSlaorrg4//+N/17PPMMbcrLo5pUlUR33NHgku3bOQ554sTMfddbtvAs8HnnZXyrJgHPqZTKSp4/PfXUzAp65hna07Ytt1OLFkTPPNPgkksu4brdvDmzoog40Lx58/Tu1djTS2nh1lt5bm7FiszvdfnlXHk7dtQ7vW3bNnrrLe5mDz+ceTFz5pBYD7XPIiVZ+fJLbqPbbsu84IULufIeeaTBV4kEUZ8+REOGZD4FWFlJdPDBRMcck9q9GrsPpTVFKxDU/GkySVRaykcySQkltq9m5jaQxWUifNDGQrVMEcXgfV8JXiJB1L8/H+l0pmee4YFIkDuAP2vIw513klgQmBF+9jOORVm+PLP7NBX4UsQPPkhyIHfK8NlOX37JYUo33JBeMQJLlnAR6a7haezBKS1s3kyUn0/0wx9mdp916zhK/6c/bfDVtm3bKJkkOuUUjj/dvTv9YpJJJiA9eza9mKFUkLKsnH8+UevWRLt2ZVbwxIkcw2xYbfnkkxRI+Oyjj/J9Zs9O7XeN3YcyInjV1cyWMg2wVpa0qgQvmeSvM124K2LvbC0AzhQRwfu+EjwioqefprSXUPbsWZ80iKNnzwaXlpQQtW+foJEj0zfM1q4lys3NfAxtSvCliEtLidq144Ux6SCFdrr2WuYXqaQ1UXHGGURt26Y/hjb24JQ2briBV5B/+23697jmGmbZX3/d4CtRL//7HzefSD+UDl59le8xeXL692gKSFlWhPXxxz+mX+i77/I9fvtb4yXxONGAAbwGI10CXVZG1K0b0Uknpa4zG7sPLVmypAGh8g3hecvEi6e5h+55hBcvk0QFTdl7l0wmeWGdARHB298JXlUV0eGH8zxAqitqHUdPHBxHe/ndd5cSwFND6eDKK4ny8vyvJNsX4FsR33031+2sWakXkkI7bdrEM7jpToGLse+++9L7PVHjD05pQ1gg55+f3u/ff58r7+abtV/L9XLhheyETScdRzxOdMQRRH372knfFybSkpUzzuCEdelUXnU1M7cePZhAuGDuXG7Ov/419WKI+HcA0Vtvpf7bxu5Dn3/+Oe3JJEOD8L6l68UTzE1KSKcjeCL9Xs0sbsoQ3ruaDCxNDhUVFbRs2TLj9xHB298JHhHRO+9wM/3iF6n9LgXPEBHR+vXbqFcvokGDUk91tGwZT83ecktqv2vq8K2IKyp4VO7RI/W5uc6dU2qn3/2Ov/7ww9SKSSSITjyRU45lMl3R2INTRvjjH7nyXn01td9VV3Pi6e7dje0r18tXX7Gz8Ec/Sv0R//1vfsSXXkr9t00NacnKypU8nT5+fOqjugiX8Nm+Y8YQHXBAg3BKT2zeTNShQ/qpixq7D+3cuZOWLVtGe/bsSc+Tl0yywyGdvHiGOVPTc2TCJd2SJjc2EokEffXVV7TBxZAJguA5fJ/vDwYNGkTFxcWN/Rip4dpreYXZRx8Bxxzj7ze//S3wf/9X/1zz5sATTwCXXNLg8u3bt2PevA64+GL+2W9+46+YvXuBYcN4m54VK4D27f39bl/A9u3b0aFDB38Xf/ABr3y+/nrg4Yf9/aa6GjjkEGDDhvqpB1zaqbQU6NOHs3S8/z7QooW/ov74R+DOO3nbs0y2OU6pTpoaqqt5L+HNm4EvvqhNReOJBx8Efv5zYOpU4JxztJeo9XLzzcDf/w4UFQHDh/sr5ssvgSFDuIsvWLDvr/hLW1YeeAD4xS+AZ57R9gEtNmwADj8cOOUUztPkY8/Uzz7jpAJXXsmrn/1ss5pMcjKChQuBRYuA/v39PZ6MptCHdu3ahU2bNqGqqgppcQCqWZoai6W2FL+6misxN9f3vraGxbauSCZRuy1ZVjAJIgKF4zho1aoVevXqhZihozuO8wkRDcmooEwZ4r527HMePCKi777jjKeDBjXcZ0WHvXuJ+vUjat+eNuflUUJ4hDQLLAREkPgll/DsoJ/ZxmSS6NJL+fp0p3abMlK2tG+8kSvj3Xf9XS/2Crv5Zipt355X0Xq0ExHRm2+yx/SCC/w5OebP58e65JLMF781tvchYyxezHF0V17p7/oVK3j58hlnuFaeWi8lJRxd0aGDv+THe/fyeqqOHYPfaaGxkLasxOOcoLhtW45L8EJ1NbdPfj67T1PAbbdRSquV77mH1BzXKWOf70MCTzzBlfHoo/6uf+EFvv73v2/wlVudLFlC1KwZ0QkncEydF1at4i570kn7dpgD9tcpWgDnA/gcQBLAEJfrxgBYAWA1gFv93HufJHhEdZHX48e7S/mePbyBqeMQzZ5Nw4cPp+HDh3veXnSwvXuZRx5wgPd2uGIV2R/+kML/2IeQsiIuLeV4yU6dWCu54eGHufJqNses3XHEJ+6/n3zF061fz49zxBGeYUm+sF8MTrffzpV3773ujHfVKo6k79jRk6Xp6mXFCg4nGzDAu+6vumr/M5QykpXlyzmod9gw9znUeJx35zGkRfFCPM4qNSvLey/hhQv5ukmTMjOU9os+RMSVcNppHHBaWOh+7YwZvELspJO045dXnbz8Mjexl5FaUcFpa9q2DXZjlMbA/kzw+gHoC+AtE8EDkAXgKwCHAMgFsBTAEV733mcJHlEdoxo1Sr/ooqSEO1AsVusFSpXgEfEiwXbtOND7k08aXptIEP3tbxxnNHZs04xxCAJpKeIVKzgWr00bsydP7JE5YUJtcEmqBC+Z5GB+x+Hb6VaJLVrEXqQWLYi++CL1v6LDfjE4VVXVkYKf/1wvwKtXc47DDh04yNQDpnoR3taxYzlPpIrdu5ncAUS/+U2qf6RpI2NZeeUVXhjTr59+tE4k6irv3nvTLmb3bqKjjuIuq2wxWotnniFq1Yro0ENZzWaC/aIPCWzcyHsy5+Rw1gcd5s9nsn7MMTwbpYGfOhFr2X71K31M3urVnF4onTDbpoj9luDVPpw7wRsGYI70+TYAt3ndc58meEREU6bwiDFoENFjj/F8zvr1zLiOOIJNTClCOx2CR8SKrksXLurnP+dFiGvXEn38MdHJJ7PkjB1bu2Xqfom0FfE33xAddhjPK9xxB+fIKy/nDWAvuIArb+LEeloqVYJHxBx/9Gi+3bHHcjHr1nGc+m9/y6LQvbu3cZ0K9pvBKZHgKXXhFX/lFRbmL7/kebuOHdnKKS72dTu3ennsMXZetGlD9NBDTPRWr+YwiF69uI/dcUfTTOWQCQKRlQULuOK6dWNL5vPP2R365JNExx3H7RfA5rJr1tStSzv/fO5D69axI/6yy/j8iSeyDswU+00fEti1i2eNAM4RWVjIyumDD7jycnOZBG7fbryFnzpJJjkNF0DUu3ddl/38c6L//IcJ+AEH7B/kjigieOcB+Lf0+TIAD3vdc58neEQswb17U72UGgCboTNm1Ls0XYJHxP32xz+uK0YcBxxA9NRTwW4G3RSRkSLesoXo9NN59AbqXtu3Z8asmKDpEDwiboNnntEvxr300uAJ+H41OCWTPMfdunX9NorFiMaNI/r0U9+38qqX5ct5Nktto169/Ids7msITFY+/ZSnE0SliXY6/HCixx8PTBHt3cvhYc2a1W+jWIzPBxXPtV/1IYHKSqIf/KBuLBKvrVoRXX+957Y5fuskmWTD6MgjG/al448PhoA3FQRB8BptFa3jOPMBdNF8dQcRTa+55i0AtxDRx5rfnw/gdCL6Uc3nywAcS0Q/1Vx7DQCxO2p/AJ8F8if2L3QAsL2xH6KJIaqThojqRI+oXhoiqhM9onppiKhOGqIvEbXK5AbZQT1JqiCiURneYj2AHtLnAwFsNJT1BIAnAMBxnI8p06XH+yGiemmIqE4aIqoTPaJ6aYioTvSI6qUhojppCMdxGji2UsW+nGlpEYA+juP0chwnF8AkAK838jNFiBAhQoQIESI0OpokwXMc52zHcdaDF1K84TjOnJrz3RzHmQUARBQH8BMAcwAsB/ASEX3eWM8cIUKECBEiRIjQVNBoU7RuIKLXALymOb8RwDjp8ywAs1K8/ROZPd1+i6heGiKqk4aI6kSPqF4aIqoTPaJ6aYioThoi4zr53m1VFiFChAgRIkSIsL+jSU7RRogQIUKECBEiREgfEcGLECFChAgRIkTYzxARvAgRIkSIECFChP0MEcGLECFChAgRIkTYzxARvAgRIkSIECFChP0MEcGLECFChAgRIkTYzxARvAgRIkSIECFChP0MEcGLECFChAgRIkTYzxARvAgRIkSIECFChP0MEcGLECFChAgRIkTYzxARvAgRIkSIECFChP0MEcGLECFChAgRIkTYzxARvAgRIkSIECFChP0MEcGLECFChAgRIkTYzxARvAgRIkSIECFChP0MTYrgOY7zpOM4Wx3H+Uw693vHcTY4jlNcc4yTvrvNcZzVjuOscBzn9MZ56ggRIkSIECFChKYFh4ga+xlq4TjOKQD2AHiaiPrXnPs9gD1E9Bfl2iMAPA/gWADdAMwHcBgRJUJ96AgRIkSIECFChCaGJuXBI6J3AOz0eflEAC8QUSURrQGwGkz2IkSIECFChAgRvtdoUgTPBT9xHOfTminctjXnugNYJ12zvuZchAgRIkSIECHC9xrZjf0APvAYgP8DQDWvfwXwAwCO5lrtfLPjONcAuAYAmjdvfkyfPn3gOLqfa27oMYWtfu/3s3xe997tOj+v4v3mzZsBAJ06dWrwnZ/fp1NmJv/BrU5015nOuZ1PFSZZUc+7fda9l8/F43E4joOcnBzP6x3H0Z7zek33u0zKdPvPbufU96ZzXv04rH6unnOTeb/nguqntvu5n995nVPf+/nsdT5V+O3n6jk3mU2nb4TR3/1cE8Szp/Pez2cVTamfy+8z6d9bt25FaWmpvz9mQJMneES0Rbx3HOdfAGbWfFwPoId06YEANhru8QSAJwCgV69edMsttyA7OxuxWKz2yMrKQiwWg+M4te91h/jecZx659RX9b36ueb/+O5I6mcvQiQ+T5o0CQDw7LPP1vuOiJBMJrXv5c/JZLLe+0SCQxzFebcjkUi4nhPvvc7F43EQUe059bPX79yeR5xPJBLa/637z6Js9Zz4nVzPps9qO5WWliKZTKJVq1Y6ETYiFosZZUaVN/WzkGP5vSq/qoync+j6ltzHRNlZWVkNzqf7Xn5uta+b+rXps1v9yH1Y7c/ie9EufgdBE0yDhfpeJ2Nq/1Zl3fSqvpf7iakvmb5X+5/X53T7r+453Pq3Tre56UdTfxevpj4un08HmfR1k9yaxjBTn1DHx1Q+u42rbuOv2+/S7dOm/55KH9eN337Hcj+48MIL0xGTemjyBM9xnK5EtKnm49kAxArb1wE85zjOA+BFFn0AfOR1v+bNm2PQoEEA0KDxasrTvhef/cCNmasDvnzOjWR5KSeTkt2zZw+ICJ988okv5WoiTSbl6/Y7VUn7IXxeA4tcDyrJUt+bSJa4Tm0v9b0bTB03XUVLRHAcB506ddIaEKkoVTcFKStblVSZyJfX73QKOh2lLA8gfo0mtU5TNZpM8EumdDKmI/1exMmNNLn1lXQMJvWcl3Gk/lZHnryeXf2vuv7sh0jJda8SJlXfesGk21ViLp9zM47k925Ew+/h1afd+qncV4WB4+d6P8RKR8K8iJQbeVLrN6yx2GQcqX3br+Fvusarr5jGztLSUl//0Q1NiuA5jvM8gFMBdHAcZz2A3wE41XGcQQAIwFoAPwYAIvrccZyXAHwBIA7gBvKxgjYej2Pbtm1aQUyFvQvolIGbIOq+y8rKciWD4rNJ6NyIT3Y2N3H79u21g4hfa1s3OKgDjG4AMA0sut/6IX3qwOA2WMrnRH14kT9dnYvfZoJYrL71Ld8zFoshmUzCcRzE4/Ha917yqFOifhSuF1n08nilQi79Eju355VJn4n4uQ0Yot79Ej+vwcNE/tRX0wCi+15+RllWhGwkk0lkZWVp+6xMmFIhjJkeunJNHn4TwXUjdepvdPUmn5dfdf01HeInILeJTv/rCKFu/PAz1sjPK/+PZDJZe99kMlkb1iEbV7r+BaBBv/SrK1Ihbl6ETpZt09gq17GJ6OnaKVXCJ7839V35vWn81V1jkmF1bNYZf6pOyBRNiuAR0UWa0/9xuf5uAHenWAaqq6u1gqsKKhEZiZ4QVNHpMh04vARPR0BUoRDfZ2dn137Xs2dPEBFyc3NTUvxiMJEJWyKRqFUuMimRlbuoG/He9L/FvcT/8KontdP5GXzUz26DiW2i5zVAiDKqqqp8DQZ+lLV8iPtnZWXVKhmgzrgwKRW1TJO3z6+HQQxIqRJBE4l1G0jkwVb+L02hj5oIj1cfFf1Nfg71ucTv0/Xe6b5TjTKT1yFVgthU+qiQESEDbiTOD0kzhfGYDvkZZLk09SHZCPPy5qXjhfcT1mDqp+r/b8p91ETcdH3V7b3pELpW7ju6fmN6nymaFMELA7m5uejZs2daVoIKkzC5WQByg7spey8h8issZ511FpLJJJYvX45kMlnrIXJT5OI68bym6Vjd1I3pWd08cfLgAejj2vwqefGaaufQKVcB2XskrtVZom6KTlXWus9ucaGqQs/k1e297rP6v9y8ATqL3mQkmZS5rj28IPdFVSaE/IrPOrky9UUdCZHl102xm86lMr3qda1u4EiXZOn+s6hPU7/z6ocyTH1SJVdqu6v9SPzGrU/qjAJdHzX1Rd1nU7/w4wHX/TaI2DLdezdCpas7L1KVTh9UZUDV+eI7tQ+mQrJM42U6caJ++1Aq8Z5u47kfT97u3bt91bsbvncEb8+ePfjggw9qO6xuEPQTn2A6ANQbmE1Wi85KBFLrVLpOJH/nZyAzTal4DVpu5FD3XhBFtaOoh7jGdA/dOd31pleVUOpe1Y4p149atzpCL7/K7aFrU5OBoSNAbrE+8jndqx/rX+0Duj4h/zY7O7vetfI1unvp7unW79y8g14Dn58BT9cH0x3U1D5okhGdMpcHCN2gYFpsoBpV8nm3vubW//xcZzL+/BqCXjpG1xdNukwl7qn2QR2ZMfVDkyylQs7cYuR0/UvX10z9yqufmcY8NUZP1yfl8zojT/1e7YdeRp7of7o2SaUPmsbAVIij19iXyRhoOqeOe4lEAsXFxb7+vxu+dwSvTZs2GDt2LAB3QTJZIzphchMcWenpBChV0uSleNXvXnnlFRARzjzzTN+kyq9C1z2rF4EC3D10qRInHfySJjdFLWIXTdMZJgPAD4nRkaG1a9ciFouhb9++vhS3Sq5M93d7NSlqWTHLRNKvJ05V1KY+pmtXvwpa9yr6WyoGiizPOoLkhxCZ+k+qxoofQ0Xue/JhIkWiz6nvVZ2WSv/y08eEHMheI9UQUfubFxnSya8X8fHqd17Ex8sQSdcYUfuTySgx9THVOPEDnS71S4B0YxcRe8fVsU2WT9144fbeT58Jul/pjCivw8v4kHWZW/+SP6vtuWvXrpTaV4fvHcErKSnBrFmztJ3YT6f102Hlz0JxBWm5pOI1eO2110BEuOSSS9K2WNwGHK8O5kUe/ZJKP8rBy+Jy66wy+YzH4/XqU1e/unYwQSU6OiW9d+9eAMCnn36qJZ2Au4dOJmt+iKefwdGPt8BrUPXqU34HRN0gKOpE/k9eg6Kf/qVrWzcDRByyDPntZ6a+pvYz00CpElSZuLr1UdNn02Aon9eRTNWYU/+zyfg19TOdfvOCSY/K/Un9bDLwxDkvQ8jU51LxzKnvvYxEt/6s60fqd+oh9yO1n8l1JJeZSv+SP5sIjsnoUHWvSZb89LNU+5wXMdR5yXXjkXyd39XpiUQCCxcu9CX3bvjeEbyWLVvipJNO8i2gqQin+lkWxnQEMhXBMxGt7du3AwCmTZvmSrhUIfQzOGRCrtQBUe7I4rzOGlLbQW0TN6+RH0UvK0LAnVQFSaaWL1+OWCyGgQMHuhIq2TBR7yOXo3s23bPqBi+TkvfrWfBqB137mRS8SakLGauqqsqoD3n1H7e+4nZdKkaJiTiZ+pFMpOS+YnovXsPqQ6kYJm59SEeSdP3JrzHixzAxES3dZ5NhYiKL8ndNoQ+ZxiCdF9zPWOSnP+nGGz/XePUnmTz5GY90xohu7JHHJbc+pH52I7lufUjuL9XV1cgU3zuCV1lZia+++ko70Jm8BjoFZmoc9b1Qcir8dFBZuLw6qEqWxNGiRQsQEfr161evM5s6SapEUlUIOmvFNLCqg5t8zu1zJp3SVPfy9fI9hZdBwG/nlN+bFL98bNmyBY7joFmzZvUGOBMx87LeTQOT273U934P3X809RnTgOY2mLlBLtttgDPJiZvB5WaA6QiZTp5Nsm4icm6DUyr9JJX+4ncgk/uK2qfUPqK2pc5QlgdzVSZkj6wqV376UyqHydjx0xfcjCM/fcRE+nT9Ru4rbmQwVej6jfyeiBo8azJZl61ByIMbedT1JfWcKs+mPud2zu33cp+U5dzUT9T36v9yqy9Zzt36ihu++eabtNtU4HtH8GKxGJo3b16rhHSWl66Tid+mMzC5kTmdsOiEzEt4VVIlBFl8Li0t9bSw1M/yuXQ8EjoC6TVoyf9VJa1eg1EqA5E6CPm1sISsCNkxGQZuUzc6L8KuXbsQi8XQoUOHBqQslWBr9ZxK5LwIXrpEzlRfqQxEOrJtame5j4h21pEdHdFy+6zKrlcf0U2RevUlk8GjXmMyyOQ+4XdwkvtCKgOQkHVd+6n9xGTcqOf8eMFMHnDTe7/9QfXUqdfIxpKpf+ieX/wvrz4i6lOul3T7iYmUye2skwedjtXpYDfD3y12VdcfUu1LfuK+df1Y7f9eXjqTc8BWP3F7L8uN4zj19GG6+N4RvKysLBxwwAG+LCX5VX2vVr6JyZs6XKoWjJv3y21A6tChA4gIGzZs0HY6mwOSF3Fz62A6heUFWYGq7ZdqJ9NZ9F7ELZ2YG3Ef8YyHHnqodnDSDXq6KSPTIKoOPLrPbodbX1D7gJd1qzt0RMVvH3Ejazojw02OU/U66wYY2cjyY7zIdSauUetPN/Co72U5N7WTl9GqIyeq/KjnvbxesofMLd2P6Vq/99c9j+7ZgfS2nvNTv2obqu2kIxFe/cJt3PBj9LuNJ179yGRopHLonlf3X+T60Y2fOp0i17kKIUOi3dQ2czPs1SMVYuY2K5jK8dVXXzX4T6nie0fwKioq8MUXX7haem5KST2AhspCbXDAX549neL22/lNnX3o0KHaAcpECN0O1YsXj8e15/z+Xve9aXBVLTKThSaulevORDh09a5rG50ikEmZTg50h0q+dLL3wQcfGFf4yR498VnIpnrO9Huv2CX5fSpTuCYC6UYW3QZKtX3c+oNpwJA/p0IC/fYHN5lP5ZypfN17t8FTJo9q3ZiMp0z6gqrjdKRJlnn51UT03DxvOvk3ybWpD3il9vHqA7o+bCK9XqQxiDEBMG9xqcqBiby5jQeqbjf1Dz/y7kf+TWXr5F/NUGEaE7wcCen2A/nVDwF0O3R6uKysDJnie0fwWrVqhVNPPRWA2R3uNriYOpMfa8iNVLktftARKnHe69X0nY6oiY5gShFh8li4DSqqMpLfm6AOJjqFqJIp+Vx+fr7Ws+U2eHgNHLK3LScnp8Fg4XadXIbunO5Z1M5uOnSeFq8BxA3pECnR/uqCh1RWfqYzSJjem+7ll1Cp8i3iMHVybyJRJlkXn90GDSC1AcMtxYiJxHsZEaqcqgTIr2ynS5y8ZN0k76b6NMm6lyFt8jzJsuFmQJv0vd9DlXFxL5Mu90OSdM9qOmRyJM7J9aXKu/yqwkRi3WTdzVDQLSjTvXoZtNnZ2Q3k1K1/uPUbv9P+skzrzsViMVxyySWu8usH3zuCV1JSgtmzZ/u25kwKyU0p5eTkNBBUwBx3YYLO0hYdSjfAqISSiHDrrbeCiPCHP/zBk2R6KRc3wqi+ug241dXVnp48VfmYVkjJSqi6utqVYJoUEBFplY/O4yS3peqxUpWQW0Jh9di0aROysrLQs2dPawTTTd51hFJHMMV/k8mFH0+FDrFYrN4AIbeHl1GlGhYmAyudwTYdUpkuwdQ9p86okl9VwinqSQzEujpUdYoq56q8yzKuvtcNtjq5dyOZJn1r8kjrzqny7vYbU9k6gmkacOXzqRJMN6+ciWTqDCmdrMv60a/M+5lN8UM2TQQ0SJJp0u2y7Mu6wg+ELJs80l5Gle5wk3eT3ldlV5bXKA9eGmjdujUKCgq0A49odAFVWPwOOiYhTWXAMQ0eghz59eAVFxeDiPDPf/5T690zdU7ZUjQRKz8eDZ3nTmfhmQYbk9dOJVX5+fkNFLQ84Hh1LHVQUDuc+E4lV6ZXN1KlO4TRMX78eFcrz6/HLh2Z1ilQP+QpFQIVlNFg8kq7DTim/peqTMv1ZSJPfmXaL3Fyk2l18PAr0+IwybTXObdDNgDUATBsmXbzPrsRinSNAr+62STT8ndy2fI5IeupyLRsJKjOgsaQadUIzs3NNZIhP7Mrqox66exU5dpkrKsyLZPCTGR65syZyBTfO4JXVlaG4uLiBkKkU0Lq4aWIRCOJwE43D52fqQE/A606Baa+FhYWgogwatSolKw1r+/SmRrQEQSd0nGbFhCv4py4ThBRN2+RaBOVMMrvTR45VT7cPHSmVa9uBPPLL79ELBZDq1atGigP9R4mazEVGfZSPjqPhKhHWRn59UboZNprsFXl28tAUuXR5E1IZ0W4zsiRv1P/i8nzIteNTq5lyN/L6XrUdpHbUP1sanOVZMmfdfKuI5gmEicOmYiqcmkqR723eoi+6qWPZRlV60eVaZO+EM8iy7WODJl0tZuHWZVxVUcKOXWTf5OxpfPm6eRVLV98Fv9Tp4t1fVqtD7meUoEoU6d73NpZJwsmmfHSjzo5TfV7r8PtueX/Vl5ennIdqmhSBM9xnCcBnAlgKxH1rzn3ZwDjAVQB+ArAVUT0neM4BwNYDmBFzc8/JKJrvcrIyclB586dXSsYqD/4mwY7FbJwy0pbdBAvS9IPYUuFZMXj8dpAzZUrV2Yc9Cq+NykdL8tR1IFOMYh6M0EmaPKrOpjJHVo+p5I1E1HSkS8TOfOaAk0ljmPnzp1wHAdHHXWU0TqUp0NVhaEO6DqZTcfgkK18lZy5DVri1RRv52U06Dxz6cQg6cicPAiaArV1xob8Pl3ZldtA1jG69szJyWng7dB59HTy6vZZndZUpzNN055uh0rm/BoaMhnTGRtecqu2g18jWbyXyZCXAaHKtZvMpfLZj/41jQc62dWRNDeDIlXZ1RkQOr1kIkaqvOiMV5P+9NKxqSxQMxnMuvHCD1+Q6ykdnSu/TyaTyM3NdZV7P2hSBA/AFAAPA3haOjcPwG1EFHcc534AtwH4dc13XxHRoFQLMTWY+h5wj5Xz8l6oFo/Ja2Gy0LyUjZuyEOdF5y0vL8+YzJme06RU1DoX34t6Vq9RoXqOVCVjInNy27p1YJXY6Yiel2Lw49Y3lSV/JwZvEb+pDvbivwr5kuXIL5FTFbvOyybLptyeqtyqpN6vDOs+u5FAr77g51l0xFSci8U4DjArK6uBB9jkWTPJqh95lQcE1Zo3DYp+PWum927nZI+ZOpiZCJqbZ1D8P1lvpErYUpFXE4nz6zXzI8OqUWAybnXXmsqUP+vGBvGfZONCV8epesx0hrKOVOvGRj/eMZUUqZ9NMiX3B79Ggq7/qDLpNr6L/yrqPhaLobq62iincr27yancFm7yamp/8VlsX5kJmhTBI6J3ajxz8rm50scPAZyXSRlVVVXYsGGDq+XgJlw6AfLynCj/p8GrrsFVwuSmeNy8IgMHDkQymUTfvn0beD7kVzm2z088iR9LVPWQmBSum6Upf/aCblBNxbqUvSR+U42kEwei+734fteuXZ6EUTdI65SuTi79kEEvAuhmrLjJppeB4jfWNNVFPTqjRz4PwNUb4ubRE69+ZFQeXGWip743veoWDLgZGTrvhiynbnGkqsya7iv+jxuJ9KtD/XrvwtahJjnNRIfGYjEt6dtfdKibwRy0DpVlJZX4UPVzU9Oh+fn5vtrMDU2K4PnADwC8KH3u5TjOEgC7AfyGiDx3523RogWGDBnSwJJRobJxN9bt13thGoTi8XgD5aAOXvIhBwCr36kDnlDCL7/8spGQyc+oKhLdIKfWh1xfKnTeUD9KQ/Uu6AYyXTC5TgmI97rPbgOeGyHz8piYrE2TMTB8+HCtPLoNZm4eC5GyROftSncAM8mlH0ImfyfO6/qJThZ1g7WoC3FelUH5vU4Ru1n48pGXlxf64GW6Xr2n+gx+iZXsEfZrmOrkUdUJJm9UdXW1Ni7Mjfy7EXY3Y1NnJKi60qSfde+9yL5OJ4q6MEFH9HUyCNQn/bp4RpMsmoi/1znTAh2/pMltUY1JFlMh925y6DZGy5/lhSrqZ7n9TTNcXrNmqo7T6T3d/VXdt3HjRuP/94t9huA5jnMHgDiAZ2tObQJwEBHtcBznGADTHMc5koh2a357DYBrAKBdu3aYN2+e7wHeJMyy8MrTaukoz1SUpskK9TNou5FG0yHIpNurarXqlK1skarv1U5mcme7kUmVRKqHl+WpI2uyTPghj6YjK4s9dLrPJgKajhyqwenyfxfyqNaVSQ79GDaZyKKOJMrypsqfmyHjRTZ1sqgqVnHI6RhUedTJolxvcn3q5FHnGZDJo5sc6gZkVX5kGTW9usmoSR7dZFFHNnJzc42k0u8ArsqliVjJMuhGIN1k0mSU+NGZbte7yaJ4PlUPJhKcT9KPcePXwFblUOgCHYnUyaFq2KjyYjJQ/BrVpnHY77gs6z71s/g/XsTSSx7VutaNU6ocehkzqsGhys7y5ct99Q83OCbBaCw4PEU7k2oWWdScuwLAtQAKiEib3tlxnLcA3EJEH7vdf+DAgfTmm2/Wa1gVKuHyIlsmFm4a0NyUiRjUdAQrFWIm7v3JJ58AAPr161evXDfLQVYoOqIl15HSBrWvOoKlI1peg5qus/s9ZFLldd6kTNyUisnNL/9fQL+HsSpv06dPBxFhwoQJ9ereJG8m5aFajTrZM5Eok4xVVVX5Jvm6wU1H8L1kTpY7Vd5UQmXyEOsGMLWt5PZVSb38nRdxkl9NcueXXLmRetWrrfYrVeZ08qbTc351nKrvvAiTF0FSZc6PvpNlT1deJjKXiZ4z6TidAeaXtKer7/wYleqrrj94yZzOoaHWk5u8qTpOJel+DUeTo8GPzJm+N5F3WfZUuVOdFbL8pSpz27dvR3V1tT8ryIAm78FzHGcMeFHFcJncOY7TEcBOIko4jnMIgD4Avva6X2lpKd57772ULQJZsFULPDs7u0GnF+8B/eDkx6XsNZj7GdS//vprEBHOP//8eh1AvkY35WsipDpviO7ZZKWq84aI99XV1bWd0w9UsiS3hTivU0penhFZwZmUn+oFcfPq6ZS3mwdkzZo1iMViWLt2bYOBQWd1iv+ene2eksdLqeqUq1BKqXjn3DxmbjLkJVdqGbK8qc+qypmsTE0DSjwe19abSd5Uz6jqLTV5tXSGjB9ZTFWedPeUyzQRXd3/Uj2POg9QTk6Oq8yZDqEjTDrPJIMmfaPKh4kImGTJdG+VbJgOtR+p/U1+lfWwKmtyXzbJnNpG6tikjls6fShkQ/bOmXSTjpC6Gedq2V7jp8mrJus0VQaFvs3Ly6s3vsrjiJvnV+el1xkyJh1okh8/cuUmX/L4OWfOHFfd5AdNiuA5jvM8gFMBdHAcZz2A34FXzeYBmFfT4CIdyikA/uA4ThxAAsC1RLTTq4z8/Hz07t1b66I2CZf8XtdZVWWlmz7QWb7iszqweXldvCwLmbCVlJSAiPDee+8ZB1FZ4emsXJ1CVpWYWj+6ulMHS0GMTRavSeHoBkM/06de57yImpsC1A2YqchWu3btQETo1KmT1oMsv+oGHBMBk9tWZwCosqR+1sWGmu7jtkOJmydF7S/qf09HtnTERSX8XoObadopHdlSZVb1lIgwD5N8mUi/jvjrPHeqkemXcMn6xA+B0nlz3bwqbud099PpMB3xdyP8fnSXajDpCLDcv3XkWbSpTsZMHjtZ7tym1cV93LxyOoPAjYyZCJeO4Lt553SyBTRc7KKSebfxya/eSmWc1BF/E/lX9Zeb0yJT2RLvKyoqkCmaFMEjoos0p/9juHYqgKmplpFMJrFnzx6thSMLOOA/hk4daJLJZO39k0lefi2EIysry5X0uSlPL0HXvc/O5kSdrVu3NipIlQzoLGi1k/pRmCa4eUVUhanzgiaTdakXxDOI2Cn5WdT/lp2dXftqUrRuXhK/lqr6X3RKUpUnkdRy9+66EFKT90NndboRPpOMqaRKVTJZWbxAJ5FI1PsuKysLiUQC2dnZDZSfmwzpBlw3K1uGSu7UfqeTK7X+3Q4dYVffm+RA1Rvi+R3HqVcf4vp4PG4sV2cg+PFyuOknL3Ln5dF1k690PRtyvYg+LMucTJZMz6A+p0oo5P8mf9bVjc7oUutXR3z8ypeXvJk8bSZZE/Ih12UikXA1ArzkSNef3KAzvtzkSjVS3Ty4fg9VDlVPnFym+E+5ubmuBE0nP6ocmcY6InOyfVG+KlNq/Ys227Rpk2v9+0GTInhhIJFIoLS01OhyVjugOlgD/pIZ6hSLH6WpG5Blz4iJyJniqrKysmoJnpfVLJcjBvF4PF77X+WOIuCX8Ll5XwD9vpemQ54+1xEyk/cklXgWMSALgiw/pzwouHldVKUMmD16Yqu1Nm3aNKgzVbG4KUbTwCpbp26WsDgnyHB1dXU9pSQ/h/xsfrwupufTET+/cqTKktxPVcNNN5CKNjJ5WUyyI55VvJcJvCjDj7fYVLYf4udF9nRy5Ne74mYY6ORIfS+TW3F/1VOiO3SeGV3Zfrwq6eojk6GQqRzJ7S5kRzam5GvU+DmTLAUpR6oRqiJVOfIyMnVeWZ0cyAZjqrKjkyPx2Y8ciUP+b266SJalVORIbafs7GxUV1dr758KvncELz8/H3379nW1XATcCJqwDlQLwq8HTnfoAo7dPrsJuCg7FmMv4vvvv28cVE1KUX5VoQ4mJuE1CbGbFy0VIuZ1qIozFmu4A4UbKdNZ624yI8uLOrCongtZZpo1a4ZkMom1a9calV86qXTcfmMifiZjQ7a8VYWejszIA43YtUE3eMqDqO7QTX96TavqvjPJpZesiAFa5ykR/zdVmVE90apHwmvwVGXIpIdMhEp3jY60y55b3SApntnkofUjMyr5UsmJSGUje/3UdpLPu02ZqoRJnTY1yYXu3rIcq1441bsm/lsqOkaVG7V+q6urUVlZ6erxEp9l4uwlR26ypSPjqt4TsqI+j3xO6BYvWZGNK53MqHUq6lxMn+vaxk1+/MiSG9l2k091zFyzZo2x/f3ie0fwSktLsXDhwnoWkslaUju0PNDodhxQGbsfK8jk1dMpbj9EUZBA3auf915kUiUFqrIX+dfUTqtzc8swTYXInVCnwHUK2XSIdhbKOjc3t/az/J0qG/J3fsik3JFVC1+VF4CV0KGHHtpAblLx4PkZ6OW2FQOAqd3Fa1VVVb3vvGRFXjSjkxv5GeV0EG7yIsuNX5lxMzBMxoVJZtxkxe2cTr/4JZUq0dUZHGod6HSMbFxkIjOp6hqd7JhkRRgiqkGikxmZSMqvJj3jV2ZUHaMaFbLcqOODKiM6fSPOyXLk9urHWNXpGZ3sq4RHNzaJ+pLJlElmTHKTiszIK/P9yJJJVvzIjMlINekYWXZ0s3YmPeMmNyZD001XlJaWamU4FXzvCF6bNm0wZswYV6+dahXpyJdKtlTvmc77plNu8qGe96sg5cFUfg6ddS3/J68BFNCnAlBJl6xYmjVr1kCQZQtYVoKqUlMHUR3xMilEoWjdlKHobKqnTiVbfqYoVLe9SQlWV1fXbhOnI1qmAVNWgCb5cCNmfsi5zqPoRrK85EM3WMqyIdpCeFxkAmVSdl5E3C/JMsmHybo2DZLqQClDnb5JZYCsrKxs0E5u8uFmqHnpjVQMN93gqP4/uW+osiFedUawzliTB8S8vDy0aNHCl8GmGmSy7OjkQsiDm85Q5UPn4dfJh9eMkM5IE3Wr88zK7VNZWYm9e/caiZObnHgZcjrypNNbqnzoDvF/Vd1BRPXkQu1TqRhnog3z8/N9GWZehNqU4shrFyLVWyt0nknu1f5hmvqeN2+eVo5SwfeO4O3evRuFhYVGpaESElPn1jWim0sd8E4aKw+2fr12Xh37ySefBBHhggsuMCp8XefWkUY3xV9VVQXAe8pON02nkke/FpGb58XNMvLysqRCFk2KPzubpxabNWvmy6s7bdo0AMCECRPqyYdMyt08Ln4taC9y6ecwTdGoUzCqxSy8u3JfEDIjIHsYdDKiell0/VM3nab2a7dXVR5M8mbyvnlNvYj/I8pR/7dOPuR6cjM+Vf2hto+bTtGlS/KSA533xCSbRGSUDVnGZV3iBlXvqt5O3ZSbzvuvkxWTgapb2Sr/3ksuVFnVyYc6cyF0iUmHmAiCaqypnltZHnTOC1WvmFZIu8mUeg/doeo2+VmEHMj/IR6Pa/+7WjfyeyEbOjlJZ2pfyIWuzb1kwGRYquXvd6tow0CLFi1w9NFH+7a8TLEOsqIyKVW1c+iUqYmYeVlZXkpXlL9582YQEebOnVvvWUUn0VlcOsUq6gpAvc4BoNba1pEytSO4kbF0LC4dGVPTW7h1It30l5cVrvPwyha4XP9+ZWH58uVIJBJo0aJFYLIgW9yy4pXlVjybKgvqqx9ZkJWlLAvNmjWzKgtuXtywZUEl43Idizbzoxf8eGTk940pC0IO/MiCaAehL9xSgTSmLOiM93RkQdSx2xihGth+ZcFrGtMPQdcZaCZZMBllqizIr35kQSbR6jT3/iILok69ZEHWC6ZZk1TwvSN4VVVV2Lx5s9Gqc1P0QJ0iy8ri5fziVTSm2incpme8rB+T10VHDk3HypUrQUTo0aNHA0tePdxiWtTpJwFRLzJJdBxecWuarlPrXGcZeSl+3SHuIXdsnTXl1ZFlC0/t0H47tWxRqh6n7OzsBhasWGTRtm3bWkvZzUrWeVl10yryPUweWJ2smtrfTenoPG6ij6j1IGRGHgDFf6iqqkJWVhYqKip8W826Nta1uc6zJreN29SKmxfWTQ78eNxE/YrBUbwX/yMejyMvL8/oBTEdbu2uGqgqQXWTa7cpe1nu1bpTvSemKTnxXpQp762clZWFyspK17bVeWNMHjP1mdR2lw0auY38TMWa6lD1qqneetVIENeo8moyJlRvuumeuudQ+73XGCA+q/Wh1plOJtS+pr43HQDqybCQCR2h1B1++rvc7qpRa/IU6uRAlgHxXicbav1XV0eraDOGicCp35kGd8dx6jVkVhanF3H7ndrYJravDtAqoVPjKnSETwiLHOMjW/E6hS8TVTevHmAezOVX0flVYqgqZFP8QyrWmxv5cxvwdcolVVKnI/dCFkQ7iN/J9S6TtIqKCm0769rby3LXeRPdBnz52TOx1tXBM5lM1hIzIQty25tiovx6cU3trxoKurbXKX7xfEJOde0ut6PJe6cz6OQ6Vr01JmPOq+3dPDSqp0bnrZEJRqp9Xn6vGnKizUVdi+loL0+uWzylKazCq8+L8nQkT372dPq8St5V401noAnvnkmvx+MNvfQ6r73a/up4IcuZSde7ETlTuwPmPZV1fU1tE51nTW1Pv3JganP5OXQkX6fr3fq8l8Gm9nvVI6cztr36e6b43hG83NxcdOnSxdVDp2Pebo2qdmS/Xjg3l7suQFbt3OpArnbmZDJZO4+/bt06rTdGZ4mrnVgMdn4UuB+vm46s6cibH2+d/F59NtOg7QaheFXL1tSBTd4yr0Ntx6+++gqJBKe10SlrcX+5neXn0ZFz2TMk/pvazuI1Ly/PlaTLA6Tc1qpCVT2p6qvXYKwSM1lBuw3Qbv1ZbV9RN+rgbOrfcn/StbfO06obbE1eVvlVRxC8vC5qX1YHaJmsynVs8pboPJ0mkmwaVN36qV/PquqFSdWjKpOweJwXKHh5Uk193OQdTeWzifjrZFEm26rBJfdjYTzJfVocubm5rl4yNy+nrn1M7eanPd08qOrzCZn1Q7p0si+3s6lPq95rXfu4yYLpNyqJVss0eUp17VtWVtbgP6eK7x3B27t3L5YsWaK1DlSrQie0ubm5DYQSqK9ETS56N0WiGxBUT53XUVVV1eBzLBZDIpHAYYcd5uoJMA00urQnOoE0eT3VgUO28EwWnW6lpLpqMjc3t3aFnIjdcLtetQhNnj0TgVDbWW5rr3b2MgCqq6vRqVMnJBIJ9O7d23fbitWSJnlQvXtuVr6OQKjtLLe1Vzuryt/Nate1t9qepvZVV9jKhoJbO5sGGl07C8jtrA4eJgKgi6vy06fl9lbfq/cxxXCp8mZqZ/l/qXCbSlPbWW1r1TMj911dO/ppbzdPjl9PrdrOqlGva2cdGTB5aEzGu6kvm/q37rdyeTpvkGoMqF46WU+p04xqO8sGntrOalvr+rBoaz9tLr83ee90ZauEVCWNprFZ186m8dlrbJb7oalv69rXpK/lds0U3zuC17p1axQUFBgte5Vlq0SssrKyXqML5erVsLpX9ZzfhtcRMlUJqQP0hg0btERM7gyq5ZWTk1Ob9kTnRk+l0wpClp3NCzJMyl4uQ+cJMLnZgYaxMSrR9hqU5bZ1866aOqtMulQCJu6ttqvOG6t6cnTTKfL/E9ARLtVSl72tctvqpsL9DsB+B2OZ4MmDsZfn1WvKxK2/ijqVU9Wo/cmPQhZtaLpe10fVgcGrTVULXvVeqPWjetHlQVhOL6LzkOv6n9tgrLanStTVvmqaEnObBvU7W6K2bVVVFcrKyrRtmgrB0vVP2UASrypplo04+ZD/kwqVZPoxhEWd5+fno1WrVq5t6mYgy4dp5kQmUOI6tS1N7eo2rvoxgNV+s2fPHk8DSda7aju6TW2r5clta5oVkV9VqDNGboavziASeln0x0zxvSN4JSUlmDt3rqunR2ctiIYQq790UwYqVOVtUlaygMnKRCfMOjKoI43V1dU4evlynPvJJ2i3dy+2N2uG//brh8LOnY2DkWzly0lovaYJ3Lw56iCkGwy8Bh4/5FE3CJnaVLXwc3JytO0q/psKuS78DEI6q1tu0x4LF2LwK6+g5c6dKG3bFm+ffjqWHXWU64Ckkw3Vk6Ba9WIwNBFGuV3l/y3qBYDWK+LmvfHrwdH1RTWHmUz8vTw34rnkXQ5kj3um5MJk0bsNQmIAkl9117iRxerq+lP0YiAS01JiINK1rYxUBiIdyVA9pWp/07Wdm/fNy6iTCYZuFsWvISD6r+qlMXlr3IwCtf1UgqHz5pkMAFW2xPNUVlaioqJCq4PVttV5J910cSp919TOJkPOjfyb2lWEiej6qwlqvZhmyEzjranvmtpOp8NlvSv6p0oW1WcSberWrnv37nX9737g6KyL/RlHHXUUTZ8+3agY1Hl9VdGrVptJSLy8An7emyxJnXJQvQNnlJTg3h070Fxq3zLHwa/btsXrLVsCaBggr1qOqhLQdWx1QFa9dDIB8xrYVY+DziNgcsPL7ai2oWl6XO2EJutfKG6/RFvXjqrCEGUWbNmCO9auRTOpncodB7d37IjXW7Y0EmuTJ9Yv+dINvn6JtKkddYO3n2kzU0yVm/WvDoSmwThVI8n0XtxD9RAIfeDH+tdNeav/XZ4WU/uiaDvhVZGJlt929ON51Q3scjsKuVLbUEegdfrUzYuu9g8vr436XnhZdSEM6mcvb6toV9NA7NYXvTw3JiLl17D1akc/oQqyR85PX5QJiKgPE5Hya/S49UFTaIKXQSSP03Jbyp5VdRZEbUO1L8r15ddJ4dZ26nipvs/JycGvfvUrrFq1yp3heqBJETzHcZ4EcCaArUTUv+ZcOwAvAjgYwFoAFxDRrprvbgPwQwAJADcS0RyvMvq3b0+f7dxp5fkjRIgQIUKECBEyRbeuXbFx48aMCJ73ssJwMQXAGOXcrQAKiagPgMKaz3Ac5wgAkwAcWfObRx3HyfIqIObh8t2f8CwuwsFYgxgSOBhr8CwuauxHiqBB1E4RIkSIEEFGu3btMr5HkyJ4RPQOANW9NhHAUzXvnwJwlnT+BSKqJKI1AFYDONarDK85/f0Fz+IiXIN/4RscDEIM3+BgXIN/ReShiSFqpwgRIkSIoGL37t0Z32NfWGTRmYg2AQARbXIcp1PN+e4APpSuW19zzhXfxjvBwbbgn7KJoTn2oAwt6p0rQwtcgydwKZ5rpKeKoCJqpwgRIkSIoOLI1v0zvkeT8uClCJ0rThtQ6DjONY7jfOw4zsci4Hl/RxlapnQ+QuMgaqcIESJEiKBizZo1Gd9jXyB4WxzH6QoANa9ba86vB9BDuu5AABt1NyCiJ4hoCBEN0SUwjRAhQoQIESJEaCpo27ZtxvfYF6ZoXwdwBYD7al6nS+efcxznAQDdAPQB8JHXzQ46KBuzZq1vkGPHlCfJLY2Gupy7srKy9rN4b3rVHbrl37r0C2oyYxnif5WVnY1du+4DUfPa7xynHD16/AGdOs3XJq5Vj7y8PF+vbukz1GSZujQnujQ1pjxkbu0gt4da15WVldo2kM/p0i/oUinI6QHUJLVcz/XzAsr/WU1bsGvXOKxZcxuSyfza32dlVeDYY/+Nvn0/8d0W6qFrB1O+OFPOKTWthZxeRs3tp+sTurZw6w/ye3EveQ9l9dC1gyxDcuoDWea80sbI9SfXbyr9QdcnTOlj5BRF3P5Zru2g001u6WDcZN6PblLvqWsDOdGvWzoYNbG62ha6dvCrm0x9Qe0Tujxtqm6SdamuHeQ+oct3qUvRkkl/0CXZFulg1DQ9ftpB7hOmNC6qHhGpr/y0ga4t5N+K+6spXPyMEQDqJR7W6Sb50KVfEfperueKiop647j4rPuNLl2Lmq7Jbax2y1Uo6uOrrzLP9tHU0qQ8D+BUAB0AbAHwOwDTALwE4CAA3wI4n4h21lx/B4AfAIgDuImIZnuV0bt3b3rwwQddla4pP1BNmQDqExEvxSu/N+VwUhWqLEy6PEGmPEDyM+zYcTrWr78eRAciO3sTOnR4AG3avKHWOQB9zh/TQCgrR3lXClkByJ1Zl6/JT840eeDzk1DaLTeTXE+69nDLsaUjffJ3cqJLNbmlfMg50WTs3DkGGzbcgESiG3Jzt+DAAx9Fp07ztRntZbLsVpemHGdy3jRdPi5TIlKvZMFqnizxP/3myXLLXyeUtC7nlY6A65LGyv1T7r+q/lPzYLklitUlcDXlIJPbTP6N+tkrZ6ApX5mpP6jkUM7R55YA1q2N1PqWZV9tA7k/qn1BNox045Bu5ws1T6BOX+n6iq6OverdlPNPbQM/CbRFvzDlV1VztunaRffZ9F6tf10b6Iign34h/19ZP8uEUX11q1vT9+o4oBuXTQmvTe2h6x9qPxH5K1XZ1dWpaazRtanc9/y0xbx587Bz5879Jw9eGOjXrx8988wztcIje1h0ClMlDqpy1HmU5ESbbl4NHbFzS3RsSsQJNNxYHuCOuG7dOgBAr169tFaClwdDvHfzFKnETiUZOgIhd1bTYOVW9zqyZrLWdB5W1bvhlgxVLkeXyFb2Hsl178dSFvW1efNmZGVloXfv3rVk2c2DYbKO3bwUssdIlyxarXs/XlQdUTZ5U9X6Vq9T75NI1O2F7OahcKt7t4TBuiTB6da5ru5lwieTBNVoAer2ydR5sHWDu87Q0HkbTB4InYfORKJNXjqdsSJ7wNyMRZ1BovP0eOkek7daZ7CkoutlXWPyWsu6Qk2wHLaul+ve5BHS1b1Ohr3qW+cRddP1qpEoH7pE2DpdL9e7qCOdrnfTO6aZGpPRqJK3oHS9KquqZ1Qc//nPf7Bhw4aMCN6+MEUbOJLJJGKxGJLJJLKysmobzTTQqZaNmxUmM3SdFWBi7Oo0n4DqUhfTN+L34n+IZxO/ERD/qVmzZg0GOtXjYPL+uA1msqdCJQ/yc6pWkcn1LtexOsjJA72b58evV04lckKZinoU/yMnJ6e2o5o8QKqFK/5/dnZ2Ay+c6hXNzs5GRUUFYrEYunTpolUGOu+pzjshlKbsQauurk5ppwFVjk1eHlMbuL3XedvEZ1F34n8lk0nk5eU1mN6Q+6raP9QpcdUboPPeyP1A59lUf6fzMAColZ/q6ura9lT7oyzjcr/V6Qadl83N2ybaWiXEKkmT25WIaus8Ozu73jO56SNZznV1b/LemLw2budNXkxR54kEb+ll8tzodLcq6zpdI783ecRMnkqZFKhlEPGe4EKPys/oVt+yMeZW9+Kz6nlUv5frWPXCqdPpcj8TdV5eXu6qv3V1LusmXd27jauyzKpEXL6f2sZyXebn5yMvL69BHcvQEVHVs68LOTDVmem9ztsovxdjfSb43hG86upqbNmypd7Uop8pWqDhti1ug6Cbde03HsPPvL/qllc9S2Lg3LVrV+1/UDu3SjjcrAs/MUkmK1uQHZ2F4zb1JHdcub7lwc3Lg+cWg6TGW1RXV9dTDjpCI7e5eEb51c2q01nUO3fuRHZ2NjZu3GiMOVLrOZFI1Cor2UMh6lslLLopP7muZaXs5rmTZU/nCXWTa7mOhIfOFOfl5bkT91KnjLy8F7JxovNayPUsBmMxYOo8GMLI0YUa6Ora5LmQp3Tc9Igq27LsiroW9WUK/9AZNzqvhZdsmzykqlGi8xCpdS5+r7aDm1Gpm5bV6RF1mtTNMyrqxM0rJ2J6hY5NxVskH0KnCT2tEhOdHpF1pirbcj2pMdJqnKI8U6AeqqHvxzMnxhdVj5i8oW6zXiadLdpI1StuBrxqBLnNvqTigXbzwJnGxpycHOTn52u9oup9W7bMPJNCoxE8x3GOBfA/ACcQ0Qdhldu8eXMMHDjQ1aqWlZxwl7sRNVnQ1KOioqLedzpFoE6PuHV8ATeXcLNmzWo76I4dOxCLxdC3b1+jYlUPE2lTBzPZgySTRfnZxLPL9at65CoqKrR1bCJpXq/q700eJK9pVnkqTa7j5s2bawmDqjDdBjOVKLz77rvIzs7GmDFj6hEFUceqt0hYd6rRoRvAqqqqUF5e7kkWTFN4bkpUlltZicqya5pS0tWx+N95eXmuUxumaSN18NJNn6reTz8hAybPvey1E3XsNW2t6/teRpxqWMjy66Yf5DpWPZnNmjVDq1at6tWHaYDXkVo377KO5MptLcuul/zK8iSTUzd51p0zkVpVdnWeIh3cPPXi/+fl5aFFixYN6khXjyavvWgXkydZZ6zJs1GqV1ZnuMnvy8rKGtSVWo9yfcpTpuqYKRtpqpfTq25VUqvzxosjPz9fW78mGdV56mV5VR09Oo+bqhfUulUdAbK8VVZWYu/evUY5jsfj2LFjh7ZuUkFjevDWABgGHytfg8Tu3bvx9ttvNyA0KpMWh7AsZRc4UH9gVae0ZCUvWxw6C1Alg+JVEEP1VVyrU16y50MeVBOJBBYvXlz73HLnUTuLPE1rskjy8vJqXd2m96rXSVVkoozmzZs3UP6ycjIpJTkmw414m+pYfS+uF94Q1dMhiKisrNQpAVG/ah3rFIlav3v37kVeXh5KSkqQm5tbr07VOvbymMpkUyWH6gCgThOqA6qqwEW9mOpYllO5fnUrNFUZ1nnsdPUrnt/NU6cjgKpcis9q3crndXUriLtMwE1eUVWG1VADnQzLdSyv6POqbxNR15FE8aobZOWBTPbQqfWr1ocqk171KuteeUZF9vjrvEWyfhAeIx0x1NWxm4dIV6+qcS7rB1mGZXIvD+6qx1muXwD1vI6mOjZ5mVVd4Fc/yHXt5tmXofPGqaRF1cM6OTY5PdQVrHLdinO62RN5nFPrWBc2oI5z6rgv9/lU6leuV/EqG+cyYdQRRaGLZRl+4436CyLTwfdukcXAgQNpzpw5DRSwOiWls8TlKRFVKQhSJr+XiZppoNO5kuXBTY0hME35qcrRjZQJIW7WrFm9cyZvnjrNqlo76jS2atH4UQamOvVTn6Z0Aqqyla1yHSHzo2h1nV3UZ35+Ppo1a2YkvbJ73lSnKtnVyalOyarTHG6eZV196siYH6IgP5Nap14EQefl1NWpOPwQXVmxyiRBllFRr3L/Uvu+6rl3q1OdnJpkVCYIqgdUfgZVTuXnlgcrIa86wmXqz37rVGf0qh5l1Vsv6lIOqTAZZG7GQip1KsuqGkKgm94XfckrhMLkmXfr/7o6NXntTX1fR7DEM6tT6DojzM3ATbVOZceBrk69DFyZQKqkSjdOqfWm06eq40CuU3ksdDMMRH3qDC95jDLNJJkcBqqBqzMkVO+oOn0s6nXLli2oqqraN1fROo6zFMBiIroqzHIPOeQQ+stf/qKd0lFjaHQWjUpg1JgwHYGRB0pTp9MNrqry0k0veCkwMYDl5ubW63Bq7IbJUnSzXtw8SLpBVvaEmuKRvGK/VI+lyWunGzxMU2E64qIG+MpQvUiqlWaabtFZfOK943DQdcuWLbV1qSPXuuBzFW5TBzp51U0pqspetdBVhaV643R1Kp5NrVedZ06uW7mvqkaNburWbUpRV5/yACvLqa5OTZ5lVRfIU1duU4nqNKI45Gkvtf3kZ5D7kSyncr2q8bc677I6xWWaJneb7jJNf5umwE31aqpbUR+y/OqmbtX6VKcQdfdW69RrGtEUKqPTtbp61r2apg913iC30AJT3cqxaLo60Bk6Jpl2m5ZV69REDMV4pdYtUD+uVp2mletX6F7Zs67OyLnJaE5OTgNZ9SOz4lWES5jGMFUnqh5fWV4TiQSmTJmCLVu27HuraB3HyQXQD8B/wi67WbNmOOyww4yxC0Ad0ZA9P6bBUHU1u00Nqt+5kQ1TnI2AX6/T4sWLEYvFMGLECFd3s1/PiJtr31SPsrBXV1c38GKonjxBHPwQYd2UiW4AcKtHwDxVkpubWxsTJteF2/STzsqUPSJqfE12djZef/11xONxjBo1yliPpukRIVsmS1PnoTMZE6pnWSW+omyTPMoDjiqTap3IHk2dV8TNmDARX13cjE4eiaiBspWn27ymot1kMtN6BBoGeKukQDUGTB47t6klHfFVya7Jk+zl+ZD7ZHl5eUp1qDPQ3OpR7h+pyKNsEMjeolTqMFWvnKke5XFGJlS6fl1WVlav7+r6tqwbdV5OnUEbj9fFe3vJo84jpzoFWrRo4bs+VcPMyxPnJY8mx4DOIbBnzx7jGC3O66aeU5VHUY+qo0Xn2czJyaltj0zQWDF4/QHkAFgSdsHxeBy7d+/WkhR1qkENCFbd9/F4vFaY3QZXtTOqykslebrpRdX7IUPnwVGneqqqquopE1n4c3NzUVVV5am4dApMCKuO5MneTjfPnDzdJ1tqOTk59bwRcv3n5uaiuroa+fn5Dax34UHy4z0yxXTJg5xqDYo6kOMw4/E4srKyautZlF1ZWWn0wMnW43fffYdYLIaNGzfWqz9xf7UOdfWoToPJyk3IgqhH4dEV/0+1KIUlLnuKZG+GzvtmintRg8NNXgzxPhaL1RtwkklexKBOS5osbdGeMuSpWHVQ1Rlzar2ajAZRl8K7KHvUZc+67LUweYTEc7t53EweItkLIZ9zHAeJRKJ2cFdJh1pvWVn1F++o/RhAPWKqyqQ6yKrv5XNyv8/Kyqol+y1atGhQb3KZsuzpvJWyDOhCMHSH6g1T60fo0Hg8jvLy8gb3lj08at2pz6p6rtT/pnoP1fem70Qd5uXlNdB1urLl51I9U2p96upUPUzfyfIl+lNZWVmDe6uvXtDJgfpfxavc59yudZyGqVR05aQDr/+lfv/hhx+mXZZAYxG8owEQgKVhF5xMJlFeXt5gikEoTkEy3Kx/Na5EF/8k2LgY4CsrK2vLqKysbFCGfG/xnRrHonqiZJisVaFM9+7di5ycnNpnFYORbGnIA4ggBPJ53VSNOoXmZqmqyl3UmRg8Kysr6w1Mol50A4r4rRwMnYq1r8LLY5KXl4dEIoHc3Fwkk8nauga4Y7rFPpk8eLKV37ZtWziOg27duhmtU5WE6Dyg4rfywCq8piaPsl8LX2dgyO2tkjjT1L98rS5G1C3ORpB73bSqm2Uv+o7qadJNRQtCKWRSjbPRee3l+/itOyF3qvEiSLc65SzqRMioW72Z5M7kgVeNW1knqcaEybsk6kbUtyk2STV+ddPUKkH0qjtV7oScmEJNxPcmr52p7mQCrXrnVLmTQ3i8ZoDUuhH1Z/J+mpwDslGi1p1M5ExTyrpYTrXu5JkK08yP6iXWeeTUUB25/kxGrC6ExM0TbJq5UD1ysgHnZ6w1zZ7J/1mVO3WGx6TvxOsLL7zQoOxU0ZgE7ysi2h12wfn5+Tj44IMbEBF1GsxtIFCFRXRCdaGFKmBug4GXl0l0BjGtpbp21elAIUybNm1CLBbDSSed5Noh/Q4CqpWhegTdyIff6VeVeKjKy20KW+eRE/XlZwBQX1OZklG9KbL3VzyfrPjFdEsikcCuXbuQSCSwYsWKBkpMrgtdzjO3eDi5vlIhamJqWo5pkQ9VkakyqIuFU5W8zgsnnkG1vsWrmPJTSagqbzryJsuSSa5UciEPNrr6kgfK3NxctG7dWitrulhAtxjBVOpKhs7bK6addXFVfg+5ntXZBbWuVC+R6s2R60ykHBLeR1NMmkwSvGL/TFN6boanjlSUlpZq5UznIVe/V/WUzqtr8ujKzyxe5f+Wl5eH5s2bN4g3M8mPbEzJsqSrJy+50s3GCDkQ3k213tQ6casjnQdcLtskV7JzQ52BEXWg9k1dPel0ucmQVPW7Wx90myUQ44Cqy3bvzpweNSbBC316FgBKS0vx0Ucf1VvxpJIcYR23aNGinvteJYOqhSEImzpNK5O98vJyVFRU1MZRyJ9Nq3DkwUgMbibLVgieEEaRB2/atGn1BmHZAhOHWFWrvqqr7tQ603nyxHOoUxGygMvkWSYwstUvDlFP6quOSMukSEdwRAdUlYM6hSj+n2pxpVNfauyZrEhisVit527IkCH16ks1OFTSrHpJTPUlv9d5VcT9TN4nGbKiU5WkqDN1xXZ+fj6aN29eb6Wx+Cwfwqsik2rdYKUz0OQ4HK8+qdaZrp5UGdMZaqrlr/OYyH1S5+GU+5Ncb7I8+e2TsoypxFCdftUN1Lo+maqMmeRLll15wJNnEdxkTNcn5f6Yl5eXtg7TeYZVg0N1AqixcjoZE/Uh15Gs602r2YUO03nl5NkVecZJlTHVkJV1v+6Q+6Poo+oqVjfjVp7VEBDGt65Pyno6FRlTD1nvuzlOVHLo1idVr2Uq/VKWSV2Yk0oYdTKWTCYxY8aMdChOfT6QyZxyWgU6TgxACYB7iOjeUAsHp0mZO3dug4FB7kA697lO8ORDnNN1XnkqQg7OVC3fmvoBAK3wqd4mVampHbV58+b4/PPPkZubi1NOOUVLauWpL3UwkC0T1RKRp1hlxSZ7M9W6ceusqudOVgQyORRtpsZ7yVNbOve4GynzQ8x0HVSdmhHPJpMMnSdTR/rXrFmDyspKtGnTxjhgqgRDF6+pegRkgiHXkSxPgpCZ5Mk0WOrqSJYlleyrdaQSC5OXXB4k1cHSpOxVUqHrc7LuU6dc1HpSvbq6AdIkR2JQVaea5TrSGZE6wqrKkk6edKRVZwypU6Tq9Kibd0k3JarzfPutIxNJVQ1H3XSoG0lV5clkQPqRI1l3uxlAstGo8xSZCL3pUAmWyViU60jtb26yZCJabvWk00nyDIIfwxqoHxrjNj2sqyeVgLoZO7LuVvubSq7UECw3Au9HnlQjWjWmZWNH1knr169HRUXFvpUmxXGcvgC+BDCWiN4MtXAAvXr1ovvuu6/BXLguPkqdahNQpz90ZCddT5ROsajubN0gLp5RdTXLFq+scHXWiPxZN51rqiNRT+JZAHfFa/JA6aa7TYpX/r18X9WTIk9zA/4HKJNi0SkTnVJRp9hkpaJ6Nt28weoUrUm5qOd1nhO5jvwOUGp8jpgikom0Wg+mGBOT0tUZF/JzuMU0CSWsDuZyKIApTkdVuLLSFf1OJTtu8iSe32062zT9r4ZYuIVMqGTHFHcoD1SmqWz1qKhouAhM1KdcR6p33CteThe3JJNotb5M4RNuIQAmsuPHGNMZryrx1dWX7pDlUfxObQs1tETue0KPq3WlTl3L/9utftTZKdOsi59QHDUmXNYnuhAJtzqSdXdlZWVtX1brSi5flSl1elb2XOvqSQ0nUd/rwkp0IQB++p8uhlDtg271NHny5H0yTcrRNa/Ffn9QQwpflE4dAuC3AA4AcDWAbTXnbyeiWW73atGiBQYPHuxqMcfj8XoCp/MqmDx6Xq53VTmaBlo1JionJ6fWWhHCqiMcqrelvLwc+fn56NatW4NBVyaAOlKr1o1QhKITlpWVGUltKtMSqXqlAP2iCOElkevGaxra5EmQFaPaub08LXLnFXXk5Y3atWsXKioqQEQNZMZUN6YBVTyjrJhEvTRv3tyXF8rNWycPwm5yA+g9v2p84e7du+vViXiv9idRl16eulTrRiX3oo78yo06fSUPKGpAuTCE/HroKioq6qVxkOvC5M1Uia0cL5Zp3QgjsU2bNml5ef0aiG4zBkJu5H6yZ88eo/dSDk1QDzePUyp1o3p3W7VqlZLcqCRM1Tey3AANF1HJ/UqedZJnCXbt2uU5iyL/Vq4b1SiU4eb51k11iqNVq1aucqN6vVViapIbOaxFHcPdpoNLSkqM9aMzClW50S3KkKeuVdKpm42T60Kd7k4H+9xOFo7jZAHYAOA4AFcB2ENEf/H7+8MOO4yeeOKJBopGtgL8TpP4cW3LHimTh86N1KgeA52i0VkmokPNnDkTsVgMV1xxhW+vimzZqVadLlZAdWerpFhHkOXPsudAtX51Hifd9JqoG/mQ21cmJLqpDlXJimtN0yCmODCgvrWrTv2rA5X4v++//z4SiQT69+/fwAsgXyfuI9e7aiCIV3UhgBysrQ5UslI2eaDU4Hb5ProAZBMRNsmOPJjL/1UeaNQpV9W7rRpMOnlR5UZuT1WGTPWlO9wC2NUpIb9B7KonTtZD6nvdOVVO5Olp2XDSeZHk6X11QYnOw6sO9Go9qDIi9yFVXlSviFpHajycqd683ssyosqmWrYK9Vnl/6C+V6dO5bpQ61dXJzrZUWVIhane1PpT/7vu1eu9rq68uIUqZwKqd8xUp7pXr3oz1Z9O3uS6k9/L/10nh7IMqfKpfmdqFwB45ZVXsHXr1n3Og5cpCsArcL/xEnAdZHKkC3ZULSW5QXSue51Xz0+MkC5mQSZ3ckPLCpWIGgTS6qbGxCEUb7t27YyWo+wVVN326iCtTrvK7+VpMdmL5xY35RXroipi2WJTPXhA3RS1IGmmuBa/ngZRJ/LgL8oH6qe30XlhEomE0WKU5WXr1q2orq5GTk5Obb1UV1cbLWlZRtSpCl2QteyVdJuid6sT2cMgypAVqkpw3QL34/F4g+l44ZUyxfvorOeqqrq8g//f3psHeZZV953n5Z6V+77Vnl1VvYPZ5AljI1nDYuFwG3lAyBMWHtA0jhGOsayIsdHYM4Rsh5CEHTLISPRAo8UWCOjGIEBIjDRqQGFjuoHAvda+ZOW+7/ubPyo/t7735H1ZVepWl6h8N+IXVZ2d9Xv33XvuWb7ne85VB9cj4B7NVKRXOYg34oqBKuiaeAcvFQylnP0U4pKiJ9wMZ9VnBVIyYnbdmc2yLErZaaBThH6DbvLfNTXX24ykuHPe8efc7EVLuJlsSQqZS62JPzfeAHsZ8efGUzVu9dzcCHlKoXJKQShCnvya7GVv9MyoXvX0Az03PpWumZ69EDk9O54f59fEB4rK+fYgguo9BVZ0v/eSj5StQb+mkH9F4m5FRorWo6GhYVcRRiojwveyHl//+tdv2b/x4wfRwXunmX1K/vt9WZb9lJk9aWY/l+f5zF7/uKqqyjo6OnYhMOpd34j4nRKim6m80wOrys0sbvHhHRc9YJomKRIor5ArKirsxIkTUcoRPlURwVvnWOTYptbEr4/+DgfTIzCqaBR9qq2tLTxY3kh7qNsbqhS3SddXHUaz60qG+XvibYp8m1LE3gin+F5bW1s2OjoanHcfEfO+HmHyBjoF/d8MH8cHO+q0MZCDpaWlyLnXc6JOftHaeF6TR+BSpGz2I8uysMee8wZi67l9GrykuH+es5PibCET7Avv5tE1f0482q+ObgqBvBn0UY1gfX29NTQ07EIci9BZ/6dHHz3alpID5JKzur5+rW2NXwtF3j0SX4S8Kjct9f6qIxWtqaystIaGBmtsbIwM5F7oq///3vFSB6yIX4xM8ME5T6Gp/j397yjC6lFF1QVF6KruW0NDgzU3N+/ipHkZ8QhsClW8FbTZp41ZC4/Op9BoBVE8Mla09x5V9vqxqqrKGhoarKWlZdd76/um3j11/hkevfQoud/fzc1Nm5mZKZSD1P7neW4jIyP2YscPlIOXXbvi7O+Y2ft3fvTrZvav7FrT5H9lZv/WzN6d+HcPm9nDZmadnZ323HPPRZEnDoIaAjX2DBVCFHYqivAVtsvLy9Gfvto25QSosjOLK0dTzp++i0YLc3NzVllZad/+9rftwIEDoWqUD06gRyUU/fNcABVqn65OcYV419Q6pNqdoBx0HXimHjrm5p0+HDvP7yCSSq2DOsbqDGIQU/wy9kejS3XyfBDg91//nJ6eto2Na7eK+Mjb84NQLkWoXYoT5N91r7VIpbA9IuPXoQjh9jwg/kQuvGwUcab4TjUIfh38uVB0W2VCPyBSrId+VJbUgfbOsF+HFCLlkbmUHOhaFCFUe6FS/lywBioTvsWDXwsvE8r9LUL7i9Zhe3s7cmyLsh17rUUKhdFzgUxoWnVH50eGP0Vh0bXQd06tQwqh02DBo3KMVGBYxMkt0g1Fa+GzHZ7GooCBXwflKdfU1EQtjFLvr39PoXIaNPh1QD5TwIlHrfVdb2Q3vTyorlQH2TuEHsn3KC3ysNc6KFLpuYLqQHrgxNsMDwzoufjmN7/pXZlbHj9QHLwsyx4ys5/J8/xNif931My+lOf5/Xt9h7ZJUYWsfJ8iJaRGaXl52ZaWlqKf6yHVQ4wiUg9dHZWiw+fTIghd6lPkqDz88MOWZZl96lOfCoeP5+oh8IrYGyR/yPRT5Kx5grdGe0XvjzORgv298tG/qyOXSgf4Awdq6532IrQ29e7eQPl390pHHXbenfdfWFiwyspK6+np2YVG6r6mHBHd+5s1xPr+qdSyT7OnAhff+kZTqSmkVhEJfX/mpyibvotvaVPkmPu99ykP75gqYlDEq00h9freewVqHrUyi5GYomCtKOWj75wyMkUGVykeOlLOR5EjVpSt0N9RLq1H7XxqFD20V+o8Jf9Ffcf8u3uHg/VW+VOURdHlvVLDe7XBKqLdaBr0ZvY+laFJrUHq3XXvPWWAsVemqijt6Z1L376p6MynHM69gpC90r83Ou/Km1Zwwr+7dzbV0dpr729UmOLReY9C+4Dc23wFaerq6uxLX/rSi+bg/aA5eJ82sz/M8/yTO//dl+f5yM7ff9bMfijP83fu9R1Hjx7Nf+mXfmmXgVAP3BtEzxspMoZ7OYPqEPqPL0bwqZqd9wvCkUIo9EAoOjM0NGS1tbX2qle9ahdaowfFo5fqDPr3TzmDKUdAHcClpaUoMruRM+SdQQ6pNwieV5ZyALwTrJFoyjD4vTfbzcW8WQS3CJXxEejc3Jxtbm5aVVXVLuXAHnijoKhSET9IgwNvJFLvfrPvn0Isi1DLmzGMyqtTZ9CnptQZVKfAK0f//p4X5JFK7wz7NJXuR5FhKEIsi/a9CKnFMVDDwBr4NFuKP5f6eKdA0Zub2X8zi97fo5RFlI2UQ6DnHofQF894/WeWbnFUhMTsRV+52ffX/de0ZBHfNiUDRR9dq5T8p94/hdh7PeBtgdeN+qc//55fq46xf3+vB72Tq/uc2nvvGPr317QlslcUGKSyFqmzoMFQyjlMBQZFWZvU+3sk7kYycKMz8Nxzz9ny8vL+cPCyLDtgZlfM7Hie53M7P/sdM3ulXUvRXjSz9+LwFY0HHnggp7KUkYKPU0bbpxBSH795GtFpKsEjWD6S8YKpqaSGhoZCCFkPtCqtVKpVI3gV0BRydzPOqhotlL6ilrKXhWnmIkf1ZlFLRYFSaROfXtZUgU+V4JgWIZbst99rnyZgKFqpXLgi51T3OYVYpoITTR/6vcY5TyEV3ilNfYqcc09UVt5QUSrdG2H/jkUyrsrZB2SgFUV7rWnj9fX1Xekg5LooRUYRyF4pIaVSwB/16UGPSN4ImS9yyJU/6rnEKVQOvpx/55Scp9DZ1F77NNhetAmPRN/suVZEOkWZ8IR81eG612trazfU4XoG1AakkOjUXu9FmeH96urqrLGxcdf76n6rPlQkmvf2Dhdz806W12X+3TXw9pQAdWBTAbe3Xakg42bkO5WBSDnb3l6ngoybAVp81snbrlTWRYOsVPHJXtkmL+tFe61OZkVFhT300EP2/e9/f384eC/VOHHiRP7Rj340GMa9BMkshvF9CtdH6inBUfTCIxZeaWj6zhNg1UgUpW9Sf05NTVltba0dPXo0QuoUqcAZ0Goqn7b2DuDNRicpzkzqff17p9J2+u4+LeUNvzpQN5uuKoLuiwpLfATmo/FUROrTlCiMzc1Nq6ystPr6+l2RuToHvrDEfzRQ0LVMEebVUOkcU0UCvlBC01G6twQynjyt72yWvstV98gXQ3iOrBp7v7+eMK/KeS+CuCJTune+qEblw6NuGsSpo+uRuBQ5XpETLRyprLxeUFNUKJAqEtiLIK/0DCV4+3Xw5yFVHJB6b11nHeqM8lG0RN8jVTDh10l/n7PtCwRSKbqUDHiyvF8PlenU7+n37VUkwDqg7/QspIoFlMZQ9NF11DXwBSKpdUitgb5X0Rp4mVcZUAS6SA6K9ADv4oshfOq5SP5TZ1//rnbOo5KpAhBPN9jrPHidp89InYPUnvNOn/3sZ38gGx3f1lFZWWmtra2FaIdGB8rNUMfGR8GeCOo5WZqCxVCoAKhC2ouPoqm2IiKwInk1NTX2kY98xLIss09+8pM3TDtr2k1JwD4i2osIrU6dR7N0FEV/nnfCexUVBfho92aj/L1Qy70Iz6lUm5KdVblpWkGjvpSjPjw8bBUVFXby5MkbEr15T33fItTOO23qmHp53avoQf+dd1xfjBynuJU+peq5RT59UiTHKS5p0Z6qLHsu4a3IMfzRIv5gEV3Ao1WeP+h1VEqOQaJT77qXjvJpolSasEiOlS+ZelfdU4/CEnD+eeQ4lQ5XpCoVcPv0oDryqSyDyrFy5FI0AFCaojNLQKbverNynOLEFumoIiqE54d5pyMlx6qjUvLa2tq6J9KcQuJScqxBFfrFv6uez4WFhei9U6nvP48cp0CTokITb39SRRZFnF//vilbu7y8bFVVL94923cOHumxosMF4fpmNiBlGIuUpqZozSxytvi7ohaeO+Ghfg4SytPzCRA0Bs9eX1/flbryaWmPzpHe8AZwr3QVz1ZB12i0CJkr4o3o+3lHjnXk+YwUmVgVpt/f1McrDEWotre3wzzq6+t3RaK6p54r5PkiKIV77rknyQdRdBmFvbS0ZGbXEVevLPWj+6upaUUbNR2jitHMwpybmpp2IQ6eE+aNhO61vpc36j6lzpyL+D8+ovY8lvX1uFmyIvGpKNvMgnJvbW0N59QjKjpnv083g655ZInzpDrIIyP+fT2you+kaUR9N3VgOGMvFj3yiGEKMeL5vOfNoGYeFfSp0RQq7PU8JPa6ujprb29PojxFf3okTL+X4RFa5oTzOTU1FWUr9D084qlIT+q9vNyoTkXW2trarLOzM3Jg/Dv59ypCOLEZKaRbP7OzszY5OblrH/VdU2gmMuLfqUgOVQZbWlpCqzOVUX3HvZBLPWOq64p0ytbWls3Nzdn09PSuc6d7l8pI+Tl59LFIb2LXXuzYdw7e2tqaDQ0N7eK06GLX19eH3/dGM4XkeU6D/umRH89vQFB0qBPkEQGNIoga/Z8aNSuy4quLGHvxOFJR4tLSki0uLu7iLilywPfoYdGhUHwRj0F5C/4deU+ge0U+cJhUianS0VQ7e5Li5vi9XFlZCQ6Ed3C9Q8TYi2eoHI2ZmRmrqamx6enp8H5mtgvVVDRLgwSGKiB1ZlPcK/9+29vbuxCCoogYudF0isorMqvcUb9/BFueV5jij/pAzMtrilenZ5C/c349Guu5sil5RSmrk+7bS6Rk1Z9bjfqLuHTq8HiOEXuknCrdSy/PqneKqvzUwGo1YoofmtI7HvFQhE6Lt3yqTA2r1zs3ktci/Vp0JvM8j5wHRQ+L+IFFutUXaik9wusdz4n0NuRm9A5/pnjOfL+mgX3QpYFziuOb+rv+born651dzXppZkT5j/qO/nzqudzLTvKe6D4NIuG4pvitfi/hQSp33fPg+Kij6gtLPIqc0juc1fn5+UhHafbHy+vY2NhN+TR7jX3HwXvFK16Rf/WrXw3GQpEtT071wri4uGiLi4vRf6egcUV7VLl4ZEeNvTcQRR81hvzblJEwu2bs3/nOd1qe5/aJT3wikKxRLKkD5w9ekXOqhl6hb5+auxHZNkU21hSzr2pmqEJRhMpzIosUp08ta5oLA69nQyPFonSyGoAbkca9IvniF79oZmZve9vbzMyiaFLRxhuhyCnHJYWwqiOq+8b7eW6jT7XdiAxf5Jx5MvxeqVQfXHiEvCiFyrspypFCUfdKGafei3+n/LAU3cEb8xQq7lOHRcg4OgRZ16F8vSK5TNEdioo2PG3FBw6s782+WypVyLulyPtmu6ulKysrdyHfqRSp/1mqIEUdE8/H9Ah/yqHW9yviG2sg5FOhqbSv8mu9E6Z/6nuh84tSgrea7vVgRVHKcy95VIRKUW2dc0oW/TnzTpZmL3xg4ANZXxjpz9nN7ht+gaKAirqlKCdeFvfS+z4YKNKP73rXu+z5558vOXi3Mubm5uwb3/hGcKQ0QqmtrbWmpqYI0k4pABUidRrUCcQRXFxcjDx4DNbGxoYtLCzY9PR0EFazuErHIyIYWXX4Ghsbw584Sxptbm5uBqSksbExOIGVlZW70tIaXaacXH0n7wyCHHBwFhcXo3SwIokeCdGDrlXC+m6p6mE9OHSxTyk5Td/p3hU5tykHXpUC76ZpI7PrDoUqKK/YUu/X0NBg58+ft5qaGjt79uyutLt26Ec+VIGr8r1ZB95X1Gm0XYTwpCLmFO9K33Gvfauru3bhOHKue6cIljdMXjaLEAEfnCwtLRUaXw2+UMDe0CrimkI8NDipq6uzlpaWyJh7hwnZTPHnioIT/2663+rsFqEdniKQQq1411TwhVy2tLREhSAetVKE1fNcfVDiETkfgC0sLBSiyOydBl+eT5UKutD9vq9kbW2tNTc3h2wAht0HzimUXPdur/fzfLKpqaldnGUd6shz7m5170CRGxoaIlqI7h3y8lLt3crKis3MzAS9q+lQnlWEqKaQ8dTeqU5pbW1NOvWKNHp+fari2L9bCsgBjVO+uSL/eu6QzRuhxfX19cEmHDhwwNbX11+0v7NvEbyKiopdsLJy7dhMdWoWFxdtYWEh+m9FTjzCBWxudj0KuJHThqPW2NhoTU1NkROgykgFWXkLysdaX1+3J554wjY2NuzBBx/clWIt+ug7aaSTQrbUgKnhVgOv78R7qYOTSndotJ1Kc/j0hnew5+fnbWlpyRYWFqL/r1Gc8rXU2KeKP7yCYe7sER81/hxkFLJPbeg7nT9/3tbX162zszMYiVTQgPzpe6kjg7OAItV3wkgwn5RTlpI9HzhopK1kcYYqO9K8PhjiXC0sLCTlTx3ropSbGnZN86eQcL9PqkgVASpKfytPR1GrIpQ/pSsUIVEkS7m5OPDKYVR0wCP6zc3Nhe+kDpkaPHWi2SfVf2qw99onj4h7RFWDVtV/Gvhg1NAHqQ8y6B0xZFlRkL10OumzlE5PBa0pna7OlwYFyhvWQMC/Q+pcFel0SPY+00QwwJlPyZ7fJz4enStySngn1RWpwJt30nOmjib/XnU6wTfnSmkvGry9FDpds0seDU7p9KKPd5ZTmTPVf8xBkdK99ITqPt7pu9/9ri0tLZVtUm5l3HXXXflHPvKRyPiqoQLZMrte9eKRu5Sn79Esn7ZF+BT5UfTAzCJD5RW7R7eKUoAKA/vKJYwIytdzJYpSmymYOwVtq0OR4vR4DppPiXkOjzoS3vAqfK5O7V7pI58SS8H12vJDSbQ6fIpFU5o+HaGFIurE8u8U+lcO1l4pFt+uxqcl9N19elaJ0Do0kvZpdkVa9T3VAGiaT99JSd2+WMIXv+i++aIffW9N8fmCA4bnlSmHTlPIivj4v/vCECVIK5Gb4QskNCBRpM6/h75P0V7p2fLnK1XoknpH/2dRoYsWS+i7eaK9GjKdf+rvPnWZejdfzJB6t73ez3/032gQrGicL5C4mXfz76WOuk9h+mpVnu2RK01tamDp/65nTG2WfzctaEgVYBXJo5dNT4FAz6coA8iOnpOis+Z1h3/HondLyWMqva66wxfMeQqE1yM+iOTdvG5UXaEOvv+7p+SoLlGdrwVEm5ub9jM/8zN25syZMkV7K6OmpsYGBgZ25b9xDhQx8NyEFAJRlDIpIk76NJcn3aeidP2ZOnOKDHEYzK4rrY2NDXvmmWdsc3PTjhw5sss51YjBp+6I9oocOUaqiEA5CCliq4fYiwiuPl2nKQPPP1M4PRWJa9GAR058+pg5eHK58gZT+8N74wx5/qA6OKpkV1dXbWRkxFZXV622tnbPtLEiqx7d8uiC5wym0FWPtPrAgX+jykkNpBoOT6z29AWf+tbom3PjK3n1XXwhB/Pbi7vqU1dFAVCKRO0J1MvLywGV8/QLTXnrvytCfjwHy+uAlpaWXWTwG6Fzfm806ClKRaV0gO6d5wSur69HFYOee8u76N4w7/b29l3np4h3q4Zdg4KiAikNtqenp5M0C9UBmpHQvVFdqg6I8p95B/bI74sGdFoRmaKO8C7wo1NZiaWlJRsfHy/kEKsjpnujhWxFnGivC9rb25N7ow6YBm4eifOofRFFZHx8fBd3mD31Ve9qa9gf5S3q+fbnv62tLdJpGnj7vcF2popFUrZGdcDi4qKNjY3tCeqk/AC1eV6fzc3NvWh/Z985eHmeh9y2ller0+JbQBRF/pqK8pFolmW2sbFhVVVVhWklRYBSKRTmq9V0KowIokaDnqj5wQ9+0PI8t1/8xV+MFHwqTaSFILW1tWZmwahqepbn8x78jirEFPEUhUdUBISN4vbvwfvrOmtkmUKv9L14n5qamnCYUqicpiVQ7Bo5a/ovReBmr3HcUgiPR0AUHVhfX7dvfOMbtrm5aQ8++GAhWlVZWRkcx8bGxl08K/YkJbcadaZQAX7PzELqZmlpaReak2qb4CN83knfk/9m/aurq4Oh9ygH76H7orKmQYX/mU/tYzz8mWJPPHqj6ETRh99h3ihmj9SoLvHIjSJKRR9de+RgdnY2egcNGvz7pH6unFG/7lVVVdbS0mItLS3R/HU/fFsLXVd+T/+dzpU1Jy2lc/cfPZ9FWaYU4sd8MPjd3d3RWur8/Xek1lVRWS/76J6JiYmIR61rn5qz7qvqPD27aptaW1uto6Njl2ykzqZHyb08e8Sbz+Lios3Ozkb6UfWLfwc/Zz1/isCpbjlw4IA1Nzcn0WIvLx6h8zozhaDyGR8f33VmfVDi196jwz574VHGtrY26+7ujgKC1H4oOOHRYJ9lUruGvnyxY985eJubmzY3NxeirDzPQ8QIsqaRb0NDQ5TCBHlIcTn4uedZacqPw6dOHoKjhQZLS0sRL0CjGS3C0BQofBR1AKurqy3Pc+vu7t7FW6urq7OlpaUI/cORRDg9twHn2HO7fISoqAoHlcNPVOmrqNTRVSWsB7yoSAIUloOxvr4epcpTbSL0PfSAa2pVia+8Jw5wim+niArvoVGu8p0UGaqrq7O1tTWrqqqK+F0pnqciqsiUVh/6Ki+PpDI3RVMUgVCntggZ5qMInKKovKPndSoqBMKVKjJSRavpfI3OiXqVv6URPe/hydYYYE3nKHriz7fnzfgUv98L3kMDH863J1N7nhbv4pF6zniqyEaDAeUvpubukXqPAvlAFYdCgxxFslLv4DnDnCUNJhTN2osH7ZF5nEPlCLIfKTSb91DnQ7lyHpUv4tNqwKrID3utjogGn4rsevRX0VNFfkDjQLI9jxvd6VFfz2NM8Wc1QFWnjLXyyKLqWt2LVMEdv6P0Eb5LdZQGnkUc0wMHDgRuH+/S0dER3lODbD3frFWKr53iNvs/p6eno0ycchVTuhZ9qzKV4p/re7S0tER8PvQUzibn4sknn3yx7s7+4+A9+OCD+e///u8HYcCZKyJOQ4DUP32KlkOQSsfcqAgBIfYkcD20ytvSaIHD7w2uGqpf+IVfsK2tLXvXu96VJHJiEDS68ClYFCPCuBck7gmpKYWizq9Wuapi8JVM/k9fWIAySVV+psjdvoIpxWtMzR3isxonRal8GsxXe/pyfeRuaGjI8jy3zs5O296O73tU5Fjnr8qd/VCn2ae8dO3N0j0eU5zFFHfRcxa9o0ag4VORHt1Vh8zzFIvmjuwrsq1Ebf8Oft5ajKKEbI2YfUrYcxHVeVZk13NGFVVkqN7Rs6tpR49KqzOZokwg84p8Fq29Os0pVNqn4nTuZruvb/ScUI+m32jungyfCn5T/FY/d3SkrrtPJfrCkr3m7t/D8+0UsUNXavDt+WbeUfTvoLLmeWfqCHsUyAccRTpGz2qqCCHLsl1cOR/s+hYn/D/NengUnTXSANfrSrW7/h1S/GhFodWBT51TryNVv6eK+9R5J6j1XHz1FTwf31fcKpVGgR4v87ru9fX19sQTT9jU1FTJwbuVsbCwYE8++WQUMbPJtKPQQ6XRjK/EWlxctLm5uVDhs7CwEP7U8moEYX5+PihGVcRK0tTIuLm52ZqamqypqSlUy/EzjRJqa6+V9pOKxAHc3Ny0X/u1X7M8z+3Hf/zHg+NEBLOwsBA+8/PzNj8/X1jNuLi4GAScgUJQ59VHLsyd9/CVwSiM1tbWyBgqrM7hXl1djaJIdbpZd52/8rz84TKLm4HqgfdVb37uuv51dddafSjxGdnB+VYehyIPzH1hYcH+y3/5L7a6umoDAwMRQrG8vBwhExhzTV+q46coEB9df1+ViPx7VMLMIufVI9i+AkxlSfkptLhQB1wdEfg0pHC8/OseFFW1oRQ9B80jKqlKSuavsq8Rvipo5q/pPXVAFGXUKmuVG9U7TU1Nu7i0GEZN7ShHy8uPrr0/u3Nzc7a8vBw5BD4lq6i1R1F0zvoeilJoRaE6sspnVD6zl5/U/D3XTDlmZtf7biqlYi/59/Kj8u/5WBoAeV4ZZ8CjiTp35H9ubi4KQNfX16PUPkbdO9+pwD81/5aWlogf5/mxarvQnR7B0rmjQ/n/s7OzkZOoDrkicRp4qhPF/NVu6dmFG6fOuTqaKf6ozxJoVS0f/ntmZibiXHIGkE10jw+c1TaldD//v729fVfWRvm8Hl33oIXqzpTtmp6ettXV1Rft7+w7BO8Vr3hF/od/+IdBiPQA49DowvuP3wit+tPqxJTyUeXS3Ny866NCpA6H8oxSKQ1NZ3iH7ROf+IRtbm7aG97whugAA0GjABgppw2lo4dV56zzVocZo8V6KO9DHQZVjt5R5hCrw4nSxAD6VJJXlsytpaUlOJzqPPiUmKIXDI08vaHVNedPRXt1vVE0OIA4asvLy1ZdXW19fX27nGTWWWVEWxMoeqQwv/L9tAWGV/DM2xsrItDl5eu98TY3NyMOkKbuNOhQxZiat2+jUGRcFZX2jrEGVz51h2OMcdKImbOkJG3v1PigRNFpRV2US4RSZ71JmWKUdI2ZP/ug2QBF1BVVRJ9wNlNpOR8M+hS8IhzeGVZnQNebOXo54U7QIkfYO2I4s+rEp4Ko5ubmXeuNI58Kom5kRFXOfQDImmv2ooi2oen11Ly9A69FPVrUp7xiRW01uEittTqWut7KDfXFVQQe6jj6c+nlG12oaKjyVtXpQidrKxPvtKh863qvra1FnEHlP/tCEK/D/dlMZbt0vVkj1uxGcuLtvKK52B3l2ysVw6doda4tLS2R3dHiD0XOzcze+ta32ve///390SYly7KLZrZgZltmtpnn+WuyLGs3s98zs6NmdtHM3pHn+cxe33P8+PH8wx/+8K6KVCVLcshvZNTVCVRFrdWBPnrYeZewkRr5KxekKOpUeBmB0MIMTZ+srq7aU089ZWtra3b06NFd/A8fMasDxZw1FeErgDXNowbSp2tZa5/yLOJNKJ/IK23leyhC6rmCWu2bqij1aQc9lKmKOE1f+eprkDqF8DViTkH4mppYX18PBGcKWnSkUj7KS/MtZrRXk/JU1IlSlEjTnMi68lZSqVpNm6jTypojj5ra3itFm0pZ+TSnpqx8wUqKtOxTV74IR2U8lV5OpWiL0oQ+RevTVakUbVHhUGq+qVSPyrkGDCrvKjc3StH6uWuKNpUq1NT+zaQ5NSWqVZJFqcKbSY3r+fTtKLzMoGN8MVBKZrzc+ApPz6nWdVfHKCUnek7155oeLUrR+spbRUY1EPLV6crd1cJA1Y+eiuPpLD7F6eVHHXBNjSsNZy8etdeVnlahKCI6xsyiQo4UBcdXCvuKWi8zfHeKV+nnXFRRz9orfQg9owVXe1GfHn/8cRsdHd1XDt5r8jyflJ/9splN53n+wSzL/rmZteV5/s/2+p777rsvf+yxxyICvKbSUoiYj0zUmWPDVQA9EdOnoOrr63eln3wKKoUoaXWpKig92D5dkEp/qBPHnLVaTpXqXtGIphFAkjRlcLNrrOidX2M99GocbmaN/boSPb0Ua+xTA36NcUw1zePXGAOA8ixCBlhjVaw3WuNUlOplQlOqN7PGyMTNpmJ8QEKErmuszqXOI7XGRfSBm1ljTZ2m1lkDqVtdY0Uwis6dIkY3s8apdF3RGquTf7NrzJx9iu5W11hTXFoE41O7N7PGDOUVK0qUQltSug39hvN8M2vsZaJojevq6iKeXNEaYxe8TLwUa5yabyqTosVGN1pjr4+L5qxrrLxEHTe7xn7OL+Uaq+1+sWvskXH+W/WgBtF/njVO6Ypvf/vbtrRfGh0XOHgvmNkP53k+kmVZn5n9aZ7np/b6nlOnTuW/9Vu/FYSI6FphV4XNlQ/iNwHh0ZSQJ/ubxYUKGoF650mRL1XaWkWnkZGSbn31GZ/nnnvOVldXra2tLTikGlF7tMssrnLyUVGqGOFGkRxDI1AfOStX0UfP/K4iihrFaQsNTxDei5StEbOW/SuBV8nkWgii81c0y6MrioAyNG3FGlNB29HREZAiJbx78riW5eN4sMaejK3Rs/8oksK6ppA45fzpHIh6lYOov6PrqilBTfn4titFbR0UafOtQFSPqeLWuStC5OeG3KfagfjBs/TZfLS1BB9N++nPir7Xj9QceD/9/37OqfcoahVS9IzUe2pxgcqLbyWi767vn5qzks31fPiPlydFF7WYgnmqnvTtQdAnpGYVZVEdow6i2fViChwDlX89q6oH9cyovKkspM6uBhOKsvszrFWeusapNiCaBtUCFqVL+POsMuPRc4+geyRXC5vU5mBvma/XizdCbr0+9wVZivazPh759FkWDeR1zr64g/mmshNqG9XGayGcUjxSRR3r6+v2nve8x1544YV9U2SRm9kfZVmWm9nH8jx/xMx68jwfMTPbcfK6b/glYrQVjuWwesOhyiCVMjKL00U4LyiMiooK29zcjCIRUhAeblbBVifQ85Q8iXZtbS3Mg2iKw/e1r33Ntra27I1vfGMUgeGQFqWPFcGDg0FUpVwOjcopE/dcGSWcctgpAqGCOUWW5aPpEQ6qpqHUmTOzoFxTJHeF6VN8JA4XykDRDuaR4mlomlsVr19XlJHykOrr621oaMjq6urswQcf3NUeQFMJ2tYAI6TOpvJ41tfXCxE7/j//Tg23Ki1NwWukrRGt58GoY6qGEUV5MwiuX1fldyE3GB5Nn2oqZi+OVGNjY1Qg4NfVp9sJ5opQUKUOqGFQh47984YghXb5ggZFNlLripFVOdyLV6RIPmiXtjPSdU2hMOx9a2vrLu6ZGl1PnGddea4veGGeMzMzEQKj3C30K7pFg6AidNlznD1ihO7VgEkdFw30U5yt0dHRIB/q2Ph11bSc53/6/SfjoMWAyLk66mp3PH8yJa9TU1O7OHHKnWQgq1VVVdH5LuIftra27qI+eSqOFg55+k0RXxJZUEBAg7xUsZnPOqnM8mdnZ2e0rtBvWFe1/R4x9AUSioTTlFqzespdVkdbHUHN2LS0tOyvIossy/rzPB/eceK+Zmb/2My+mOd5q/zOTJ7nbYl/+7CZPWxm1t/f/+onnngiOFxKvtQqKTU6+lHkbmlpKRwsNea+L1yRctSUoSpxFA4ODAeP4gTPA1Dh8jDvn/3Zn9n29radPHlyVxWUCpoihupg6Px8+xDPR9PoEwWnlU+pvkkcHJ8y3tk3M7OIF6QcFq90PKKoPChtzbJX3y2dr/5MIz9FkzyfwvO0PD+O+Ssfqqqqyv7kT/7EsiyzN7/5zWZ23UFPzdNz49SgeG6Wn6PuuY+OfXTpeXBE2Hu1PtCKPR/B+/kpSsK50eIkdYiVU+iRB0VJFI3i/TUto2ircgmVo6TcPEVYvILWyF3nmWrboSixopiKHKWQEJ2nZgj03+hQpCi1hp6v5hF3RWsUjdN1UQTbryFGTYsWtG2RIl/Km0q1QfHc171aznhumsqfnhE9S2p8+S5Fqvfi/3n+nM5RET7eXffX8xQVOdL0p+qb1D6zfrpuvh2I6h0/T0W5fDZIeefoRNXZODBayIRM6lnRNUxxzfWj6+rTysqJ0yCRIMHzy5UXp2uNrKg8atCla+crmdVOE3ijS32mylN7blQ563n7m5ubdu7cOVtdXd0fCF6e58M7f45nWfZ5M3udmY1lWdYnKdrxgn/7iJk9YmZ27Nix/JlnngmVWnog2GyFnxEQjTDn5uZsbm7OZmdnw99TbRamp6ej9IxC4xpdtLS0WHNzs7W2tlpLS4u1trZGUSfza2lpiRScOqcIklZyzs7O2tNPP22bm5t233332dzcXEAbmKdyKBB45Voh1HS4Z378qcKvKWUMoR5KTR3jMM/Oztrs7Gy0rlRHokiY49bWVkTe1yiYOTA3nSeOdHNzc6RE1OAq306LONhb9pu5anENShAnQpWHKl9dq9bW1mgdl5aWgjFrbGyMFLKitlpZqtWwzHN2dtZmZmZ2BSZKI1DepVY4KvKhctnW1hbtvyo7dbKQIb+WyJvOkfX0a8l7ITc+QmfvtApQ15E5aiUmRHyfClGHVBWwP9/8ydlSI6wpeBwQNbRacc651nkq+qmGjTmCcKP80TF6ZlQPMX9fAa1oB46BosjM0a8jHw2iNP2oTjTOnvIn/fyY9+zsbECT+XfqDPIMsggYWuaY2m+/lsqJwllXSoiiRal5qgHWIBSED0cV54V5+rVknpwlZJJAD9nW1jiaKkTumBvnm/+enJwMconzqu2gNBDxXQWQRz7MnWvlkGNNL+PIqQOTWks+/BzkkOIDz49URxr9ovute85+9/b2RnYHG64ZLqUt+bVM6aKRkRFbXFyM0uEaJKfsjj/X/B39dPDgwfBuGgB4lFCrqH/u537uRftNPxAIXpZlDWZWkef5ws7fv2Zmv2BmP2pmU1Jk0Z7n+f+x13fRJsXMooheoWwVTj6qQDUqRAlratMLqBogf5Bw4FRAfUsR3Xg1kjo3fqZtCzY3N214eNjMzHp6eoJwYiR1Djo3rzA1Wqmuro64OD7VgiH3ChOnDcdNuQ07exwpIoXWvbHR+akzVFtbuyvVShTsDbh3KBVmV2WOolS+XMoweiPu91aVpE+rrKys2OOPP25ra2v2ute9LpqbtudBiaccNdZPUQZtg6DrxkcrzDw53xttRYp1Xjo/rSADCWAQOKAcvTFUo+jbZKgTqYiDEq5VMRa1NuLs8vFpaV9YhOJWxyJFvudseD6vN9RqBP38fLFLysH11A01LnommCPGWVE6TRnfbNYChxHjjOHzaSfOrm/xk2oHlUo7KrKZOrvatUDPrWYtlK+rLat4f+VE+b3VQNCncDVToQGMFtmwlz5wYY7IgqZDFVnXwEAdMN1fPbt8tEJeEdeU7Kle0aBF6TCsPec2y7KgX7UYzDtf/LdmfQA0tMBDOdg+APQf3wIJhEs57soVV72SCv5UJ2pRoGYnCNTZVwUk1HlVPajopnIiceZwrr1eaW1ttba2tmA3VP+9+93vtmeeeebOL7LIsuy4mX1+5z+rzOx38zz/N1mWdZjZZ8zssJldNrO353k+vdd3HTt2LP/VX/3V6BBzSLxzpZWIHoHwyJP2mFPIGiQny7IQWXqUJOW8KIStcLVyA73xxQHUA/yZz3zGtra27FWvelVwXpR3xdBUjo+YvQH2vDsMnLYO0UPiOUGKMvq0dwpKV5KwwvzKXUo181UDp8gnBk7TJVq1uxdnCY6dGjgzC2jdjSp5PQ8Q1IbejA899FBkRLyi9tWaPuWtaSgcGN8mBidQ0yM+Hc/8Uo1sNe1U1D5AlXIR58uTlrUaWvdZ+Yi6t0WcPxwFTedoOkyNiqZyNB3PHFNrmOq1qGvoKQMYR89HUkTWp8R0bsimpvCUP6trqHSGvdYwVWmpTjTOAudwr5QYukedQH5fCe5apIOuUeRLZdBXYe9V1azOYIq6omdFswg4gpqixRjjMCgdJNV4W9OL2vsTvaC8Q3+OlXOmPRG10Aw0jjkiQ5oZ0DSi9vhUZxo50HS8Fsd4Z3+vYEkDOdbey6CeD+8QqnOjulFT8lrQkcpaqN1VBE45sYpgc449v5j5eWRYA3V1qKFPYUs0EGZvFUkvAokU6EAGVcfU19fbpUuXbHl5+c538F7K8cADD+Rf+MIXkigZisGjOz4i0wPoUzTa+sKnFXxqk4NIJIGTBHSLYN9MmksRHkUoVlZWzMysubk5KK0U/O3TRtr6BKHm0IHObGxsRA5HUepakTEiRB9dc+A8aufTRapUlcjNUKdNo/5UKlibKCuXhMFe1tbWRg5aKl2gc1PSLoNUmy/tZy5DQ0M2P3/tphOv7FECyJknFKvRSUWsRISsmSKxRMJaUYZyUjRbFWkKzTG73k9LUWI1OqkUpRYSKIdJnQvlRabSQD7lh6Or/CpFSXAYdH18uq+lpSVyJJX/5dFXnVcqyk+hrym9ofwenUdRKlKRYdZeHUZN4XtqiabOOJs+navtI7RlixpqTd8jg1rpqA63VqF7Q+330xtqLQRhzThj6hD6tKMGzKA26A1FDJV35s+m12sakCqfj6F9QtWB8bQM3/RWOa8MnC+cVw2SfYYEWcM+eecL5xW9oQhmKi2vAZ8HGTwnXB3WVPYGOUutGbKbclhTNkABEOymRzA1feyR35R9Qr+owwUyXVlZuYubV0QT4IYR5obeUY66OoO6l7qn8/Pz9pWvfMXm5uZKB+9WxsmTJ/NHH310VzSjLRmUGFmUVtFCBoTct0bRSEHTAhpdaUGDjwKJpNXZ86RXX1zBz7VPERGM2fXrlZQrpJVcnvzqo2dVPma2C4FQlET/VHTOE8Vx0JQ47MvidS6KioA6YIw0fawFAEr298UJvhxeja8vovAIjpL/92q2qqgNUakn1isBXH+mZHBNK5rFhQmsnz7fE/21IEHTTmYWrZ2mGVX+WE8tAvEtVlSn6DPUSdJ5+DYSRW0wdI4321oFp8C3VvFtSopaqKRaw/h56r/1rTr0eX5eKqP+HXw1P7Koc+T5yJnusVYGK3Lo210oipPab9+Sgz1XR1DbXGjKMSWLqfY/KXn0BR5ayOOLOviZzlXX8GaKjHzRhJ5jECUtJmM/dU6+7YbXM8ol5v18YZGmQj1SrWimnu0Uaq2FJopaq93Q+aljw2CtQNS9rfBdFHxFKmlZzZiog+8rvZVKoSCKItVa4e2Db08JwHlNpbMJ1JAv7ILafA/uFNFk4IarM8h6qOOngYcig+wpssA+PvTQQ/b000/vjyKLl2poKg2looRMHBUf+fqNVs4Hh8PMoo1WUqtPx7LpNEwkHaZRklZ7ki723BiFqf2h3drassXFRTOzcNcrKcEDBw5EgpfitpH+wuFkaKXa+vp6khvjScqK9qDYME7qRCpcrkRVz4vR/VMjoKnKFIzv+VgYCrPrVXSaPkrxTTxXgv1DGaqBUsWvBF+/f6OjowFtXV5ejgy9GkuNIjVt7gsgQIaRKWTTIzyKcvq90xQwCMr6+npkMLUyWNNEKb6kynmqLYmmeVNy7tMbms7HEdKqPa2C83vn0WD+jbYz8mjwXjwmTUNrAKNOFrKrhigl5yBN7J9WZGowlULBpqendyFg0ApI2+MMaICS4vO1t7fvQoD92VMdxZ54lAmCPT9jnVZWViJHUeVceZBKVm9pabHu7u4oRaoOGUPpAyn+I+s1Pj6+i17DGSmSc8/dw2D39vYWGu0sy4Jzp05Xak5zc3OB6K+8Qi2cUAdPqSopG9Pf359E4nDOtW1NSs5V1qempiIqA/unPeH24sIpAtfZ2RkF6yn+tGZi/JzQU0tLSzYxMREF6l7OtdDtRvq8o6MjOIOcXy0s8bzLIj73wsK1ljTMy+z6PcrsnYIqfj5LS0sv2t/Zdwjefffdl3/uc58LaI+mgTAu3gD7tIEiURgWiiyUBO0VuUYWmtNHkMyuN2VUToQKjM7DG5UUF+KZZ56xiooK++Ef/uFd/ZY0PeBbtAArc4AVBfMl6ZoaA4LXg6ZKKVUyr4ihrovntIA6aDm/Rqn+o+ic7/fHfJSgq9G88vc8z8v3oFKeUqpNCHNRREQduIqKCrt8+bJlWWanTp2KUsPKtdHUD1GoFh6YWYh0ixAP/ZlHBhWJ0cpV3TdFYIjSFanUFiUaOOl8WANFKJm3bz9TNBePUCrR3Lci0d6XHp3yc9Df05Gah87Fz0NbjjAUbUzNQfdGEVK/NxhTnYNv1+IRMv4d89BzxFlSVEyNpaLIKfRY06V6jlRutUgLmcWY+0BWg6JU41lkV/cJ+dP9UKfMZwBwVBVpUs4XDqLyDlOZCU0fa+GEFp74LE4qU6I6RgsSfOW8csI1WE3xcFkflRltp6IOmAbRzE9lSeej6WzsAPbS2yjVxSkuodoBX1TiiyLQx3V1dbvS6+yVDy6UKpGil7Bn6px6hwvUjWIIHGlkiiIc5qSZInUAZ2ZmbHp62qanpyOaBHYUHQRXcHx83NbW1soU7a2MwcHB/KMf/WiItBB4Brw1DjUbNLvTfmJmZiYSHIW9MaxmcWUPjpRWqra3t0fVMzh9CDBzyfM8go+Vg6fCws84cCidkZERMzM7dOiQVVVV7Wopwhza2toiAQb90Ao3DIM6VOoEI8B6oLSNiPY901YsyrfQefj5cMBJmWCkNKWuHIvp6emwX1rJy/w1BabGSSNh5sNclBhMlRionXIstOoZWVH5UeRndXXVxsfHbXt72xobGy3P811Iq8pPe3v7ropsDIUadIyOVjn7+aj8sD44qWrM1WBqlJlaHzVemn5TZ0KRQ9aE9aENhHI3cTIwnn4+ul+6PsolUi4d88Fh4FnMx89J56Prg2LXtJoaKM6556oRQCjvVh0tNVS6LsxJ58O/o5ABRwcDpOmhovmo0+O5tswHXYjMFBkqdXhY7+rq6iAXKssqP2rgtU0Qg0Dcz8evD+dLK0NxCDV97Lmre81H+y/6QjfQHNWF6B4FCJSDpoUnOMh+Pl43K8rLXGpra6NgSos4mI9fH+aEztSqVG2Tpbxjr3cU3QVx5t9pAKEOKc9WvaO8S3XkzWK0i0BbObNe9yin0Xd9YL21BZbOR9dHK8eVz25mUUWxdgEomg/yznw0O0fGCd2s6zEzM2OPPvqoTUxMlA7erYxXvOIV+R/8wR+YmUWNY3Vxp6ambHp62qampsJia5SkfCN1DDC2GBkOBEpVHQNF7TRCQ7GrkvCGGB4AHDuz6xGRVsy1trba17/+dauqqrL3ve991t7eHikthceVf6UQdJEDxyFQpIpB5Ipzy/NUYXljRwQLKqDohiKYuk8cUPaGKIioTDlzil4WkZ3VaWM92etU+hDl4KNXokPfJkQJ/j5Sff75562+vt5+7Md+bFeKTlExDK5vW6KpFJURyNZaRabtQJScrlFzKv0MguXbRKRSTfypAZDuDU4fijtVWa4VganiFdLgivboPHA81BlK7Q1ViciJTzWrIdO2PAQaZtfbtmhKUIuiNMBQKoU2A1ZUTrm5qb3RSl11WrVyWPfGp9p0b0jh+rYsytFNFYvpmtxobzQzok69OrLKuWJgUEn7KcfKt5fwjqr2uESX3KgdFlkRXRN/bvZyfAgA2Tv+nRbnaBbEB1wpB16LJUBhtX+rPtsHWy0tLVE1tyKnCmSkAj91mBUd1MyDtrViX7B9GkwQ+KHblPuO/dMgC/BCP6rvFWFWDqOeGfamo6PDOjo6dgV+WtyoFdnoeV2PyclJm5qasqmpqWCTcQLRbcg8tq++vj7al87OTmtvb7fOzs4wHz1Dim6vr6/bm970Jvv+979fOni3Mo4dO5Z/+MMfDg0nUWBm1+8GxGFRwUfo2WCcP22zQNSiHbxVKSHsCJ0KPlEZCl5J7r4aVA/g9PR0pDg1FVdRUWGjo6Mh9VcUPeP4qZJkLgzlaaiRSEVjRT2BFPL3BkOVEmvC/qjge1RqL2WtpFicYVohVFRU7EoPeEje88d8esBXxirHThU1H41Qtf1GTU2Nzc3NWU1NjZ04cSJSUJ6XgQMPjw0lifFQQrWvsFMOG0gLyhXDob3WUgiHVkuqs6OpYoyY7y+Z4vSo4VByvKZg1TlPcek01YWTpAivts8o4jz5ysii6kPPNVQ5UVlJVZEqp0+NmaLOWqkPJwxdQNovVQ2vsuIrDXFGFc3Y3t7e1TkgVZ2stBTlq/rKxxSv0J8h3+8T1Jv1TjlfnCHOM7LtnS9FwXRNvPOjHFXlXaZkRYNb5qJnmjPEHqXQZV0D1fkaWKKDNI3u03ypIBsHTIvrNE2M3tRzrDpf0W7kWatSFWnSbgnqcAGGIL8a9CtflypxzrG3hR0dHbucUnS/VmETGOm+TE1N2eTkZGQTlReregXUE2QbWcXpwvHq6OiI0sOaqVFARlFtnQfOIPNULiW+RmVlZRRkd3Z2Bkews7PTPvrRj9rFixdLB+9WxoMPPph/6UtfCl4yxt8LDILLoVY+gfJiFKlSZwVhUdhWK42UU0Ykpc4BQuIdOeBl7aiuHDJVrh0dHfbYY49ZdXW1/et//a9DtIuToJW6PtJGgTAHXQtNA2s1mE9xagSlKenW1taobQdKgBQDTqTfD5/CAwnR6Ek5Jroffh7sB3vCOmhkq1wO1kDnwcFFhkB1QT90P1paWiLlwRxAyr761a9aRUWFveMd77CKioqIg1kkmyhWRcm08bYaX01hosw0utb90IauzAOjC9GajxphNb6paNbLpo/ycY4aGhqiymOcC0Ur9Xwo2qA9ulL70djYCbWjigAAVuJJREFUGBBknQPzUCda06fK8/HBTUpXcEa0YtfrCk3hotwxuFrUgGzigOh+6DlFNjFwimqDEmrGwae1/fnQno3a2025uLoWKpucmRvpCjINOEC6J15X4BhWVFREzrI6YhhZrysUaUEuvK5gLVK6W1FkLXrRIhw9HyqXrAdz0Fs7lBenDsdeukL3A9lUx0f3w89jL12Bg8w58GsBEKAcPU8vUABAHUCdh+oKlU2vKxQN9LKpNBDVFdrXVHWFOoDeMdYOGMp/9rQYRQE7Ojp2UXX20hVFfoUGlso/rqmpsaGhIVtZWSkdvFsZJ06cyD/+8Y8HASUi1rRTET9IYXwcPk07QZAF/VD43Kc21KCSYlFCrTaM9ek3EAc4FD71pb2rtra27MCBA3bo0KEIZVAekK/2Yi00mtXoWqM5nBAKTiD1Ej1qWlLL2bU1jKJAHBIloyvZWknOiv5obyUcX20hocpc0xtaTEFE7wnpWtThW634VgPKr9Fef8yliIy+ublptbW11t7eHlAF3xQXArimr5UUnyrk8IUl2vZDiyUUXeVPbWFCFK17kyoWSBVyaPpP90YrqRWx8wUdSs5XR4OhhHs/D/bsRuui1a7a0iP10UIKTXmprGgVoO6RL3ZBTkBzOYda1KNcYV+ApE28tQ8YKKqeHyW8+3Oja4KDr+vAGfaFAVqEhKyovOqZUf6TZj6ghGgbEW2tw/vieGuBmFI8Uj3RSLtxRrUwLEUj0NQf5yXLskhfaL89RSiZm8qstnpRXeqL+BRdhxen1aCqS32fUIJYRde1iKSI86VOsAYGrI0W2ChKqr1KlY7Ex6cd2Y8U8uUdH4IUbBw2liwD76S85I6OjgiBAw3kdzTbwTup84UDODk5aRMTExH6hs3TAhFNS6vD193dbV1dXWEunZ2dAdmmJx4UF2wmgdDMzIyNj4/b+Pi4TUxM2OTkpH31q1+1hYWF0sG7lXHPPffkn/70p6PCAYj6KbKjkmXZbFXQCI7240kRmoHBcfwgHptZMDyacvSHDyWAc0MKKc/zSAlq6kqheE1nYSQwlKBWmprw70/KZn5+PhgG0sAcPC2N1xSwRl2kjjzkzR6g5DzJ3cPuELlxarU1hnJBUgUAKGpt3qwVr8qvU/SUdVGnFseHAhZSeKk0uHLKUBIYoluVQZw5HGpP1PYyqCkqnGv+HVEnis8XFvkUPPOEd6kymCpS2UsGCWxA6qhwS72/pg21clyrOXk3Jarrh/VvamqKKm8xZNrmwxfqeCQGGcQIcwY971T3AIcAh0ErJjV4SBULKd+TVPLq6uouGVQObkoGkQ9NUSo/DCfIpyb5u0cdNH2sPMYiGdQsgiIfWkFbJIO+eEu5v0q7aGhoCOudksGiwgCQyRvpQQJ8bZGFLdAqWdVBXgZJEyO7WvSjdA99fy+DFK95GQRc0ExKSgZxBBnoAPTgzcggwT1Bxl4y6B1R7dOp1fbYgZuRQa3uVlpHkQz6NLBmkW6GiqS0Di+DZhaQXmRQ18Dz4LVYRntRLi4u2rvf/W47ffp06eDdyrj33nuDg6ftE7RpcKpqzRP5McqaHlXnQqOqoqIGM4sqsVJcGHVqlHuiB0o7ZysJuampyc6dO2f19fX2+te/PvDqUKiKeChi6NuwkFbQyJa0kUb4Gt1rSoP3VqSBNSSi0zVAcWm/Jd+wWZEfqk1BOHimtmfQvmuKhinS4j/aXkWbwnq0Rw8pH+ZVhMRpQ9n19XUbHh62jY0Na25ujtpSaCNZs+sIXKqxLX/XFh2KRGo1mSJrioBpARHDtytRZC/V9Jc15rmp5r6+WS7PVKTwRk2R+R0d/nnaFkVbtqRaw+gztcmtIjK+FQv/3rdgwQHX1jmp1ie+/UqqNY7KlJdjUH+VYwyvcj4VHfN959Q513YeylFVeda1VkREESo9x5xv9l11lyKTWrygOsTzPBUNIuPi23XgADAHz3/KsixC8lVv4gT6anD2yVeDe96gdjrQ/WC/fEDuK9J9pke5v+wfRXBLS0u7ULipqakIiVP51+4OWl2t6fEUZUKbY6OXFxYWguNHatwXIWgbGd1z7BPPhXcG+sXcCIJqamqi3obq+E1MTISPzoH10fOmdlKf293dbd3d3aEQgl54yB46hWfT425iYsLGx8dtbGws/J256dqbXadoEPiB+vX09FhPT491dXVZV1dX4P+97W1vs+9973tlo+NbGevr6zY9PR28ZxQnEQ98vBR8PD09bTU1NUFwtIVAlmVBeDyJtLOz09bW1qylpcXMbFd6RXvxoSyU8zU1NRWiC003aCNcz/lCgL785S9bdXW1/dW/+lcDyobiNrveE0sVJIpieno6ICtEVUD3GEldP89j0XdtbW2NetwxKAzwVUtTU1PRYVb0FI4XBk/7OaEwKisro1QGyppoDdQKx1Kj46mpqbAXzAnEZnV1NXI8+F6iRCXoeqKu9q3TIoT5+Xm7cOGCLS4uWm9vb5gPAQbrQ/NV1hUkDKOAgmYPVEkqyR6lAyKonLYUj0urxPI8j1ASNUooJ42SNf2tShLDyLrrGZuamor6e+EIElAod4t1xzAoSsQ8FSX0hpFnwtFBMWOcNEWFs1fElWL/tbO/GkacIA0idd0nJycDOoCzpukxLfDgjGGQOzo67NChQ1FbBg2mkN0Un1N5c9rnE4dbyeBNTU27UnIdHR3W398fIYPMWR3cIr7e9PS0jY6ORi2VkHOezbvDB9N0XHNzsx0+fDikR6luVroLDo+ut6bGzp8/H6HSyldEt5GOUw5ra2urHT16NHLENJDSYhov42QGxsbGbGFhIQq2UlxiLUhQ+zIwMBDOuDr9nF1FIPXd5+fnbXh42M6cORM1d8aZ14bAnDHPVz127Jjdf//9EY1Dq3MV/VYeHHI4MTERdKG21EFveu4yz29qarLOzk47cuRIRNsAEFD0z+s2nPDh4WE7f/58SP/ifCJrivzy7uiW5uZmO378uJ08edKqq6ujPo5avKVnTDm6i4uLNjo6as8880ywhUoBaGtrs6tXr75of2ffIXgPPvhg/uUvf9nMLCj7xcXFSMmOj49HeXhIuhw+DkBdXV1kXDs7O4ORUyI/hgZ0YXNzM4LgvaIlAmNuWnHJdxVVImkVXU1Njf30T/+0mZk9+uijURoYR04Nm6bgiPq1GziK1qeftRqY9KNGu558q5A3B91Xu5LyqaqqirqPKzKKE+GdVjMLBtW3e1EDhwOhXEqz6xyLVOsO5Xb4SryiPni+ipV3xYCbmY2Pj1tlZaUdO3Ys7K/yTEhreMI5nI5UGwit4NKecuyJIpGaVlHUWVMJOGt+jXlfrRjm3KjRVgRWq9l8W5KitjXw/7SKWtdYn7+4uBhQLNLYkJdBblhbfS78JVpcaM+8VI86jdZ5X3UMFelVCofKkjrDGHYzi9oW+d5del4VMQMd1spf7c3nU4WkC7XfJXpO271o5wCMJnKME87wukKDH63aJEWHUWeNtXLUF7LwfO1RBiIHRYPz6ltSeGK8L3TDEcQJUV6WInPKj1NnSCsysQVaQKNpaR9wgAjpM+GDaXUqKLGivPp+ikRhE+A6Y4NA81QXKwrFR+UaIAAgg0bAcM4UidLAAxClsrIy0lHI08TEhI2Njdno6GjEP2NNtJ0RyFtTU5N1dXVFz+zt7bXu7u5gD9GRVVVVUYDDGk9MTNjo6Gj4gL5pxszsesZEA7ru7m7r7e21vr4+6+3ttd7e3ii4VN6ypvt5v9HRURsZGbHh4eEIedRAnuBoc3OzTNHeyjh27Fj+H/7Df7COjo6oUs07XzhAbMD4+Hg4fBz0hYWFqDUKSk0rwhD+rq6uoOhaW1uDE4Hgb2xsRI1o/SGfmJiwmZmZiIOH86UFDCg1FMwjjzxiVVVV9uu//uvBiCCAyjdQREHJpig7ijrg/KjzhaHEuVXlgtGE80WqEkPoFSrPJcqbm5uL2laApCjHRN9ZI0wUqka2pExUyfDOGtmqUw+KoigpTq2+qzr1OESakkVpqVPPs7/3ve/ZysqKNTY22uLiYlCoZhaiSuX0eNSKtcBQa786bzB9MKGcHlLwZhbWOYVQah8nTaVUVVUFLpNGsx4xIpJWZ5cebFmWRVxCjd4VpUSuNCWtLY48eqByRfqMgEJTlZ4/p3KF8UBvmF2/Ao41BBFV5ECDRargQQ4IEtTxU/3BPLSgQAs7lFqhz9NKZ/QVKWKPEiG7mrZSZ1B7/6mTnWoToc/Wvn/IM6h7fX19FKBqmk6DGi0W0MbUOHsYyImJiTAPOGK0rwJJVSe7o6MjOCjqkLH/OAiVlZXRjRq6t9gGbZ+lBTX8e22Z0t7eHtJx+nxknrZdZhbRh7ALvCsOg9KIyPLQrqW2tjbiIfJMHDHWWnnJZIY05c3zsIO8M/oM/by1tRXS3o2NjdG+9vT0RGlQdCXOKnZQ7dHU1JSNjY0FB3RqasrGx8ejFDx2kP6RPFfflWejK5ubm0PghaNN5gTZHRsbCx9kGwAEuVI7yHfzLP7s7u6OdCUIc5ZlUQGj+hpjY2P2yU9+0qampu58By/LskNm9ttm1mtm22b2SJ7n/z7Lsg+Y2f9qZhM7v/rzeZ5/Za/vevDBB/OvfOUrlud51BdLF5eoQnseaRsMvYoMxYAA83c2W7kzWs2GEPmDg5MFgXdtbS04g0RrRIV6UHGulDi6ublpb3/72217e9s+/OEPh4PKAVXFiBIhPYKCIGJqb28PjqpWC6mBV6IqiIJGpf49cSzUiSLS1HYe+lwUlRYqaJNZTbPq81hrUKzl5eVQZFBVVRURYTmUqny1r5g2hVYyuEa/fDQYwCBryqulpcU6OzttYmLCmpqa7M1vfnNQRCBpWp2o7RC8DI2NjQWHBqWLw6bpRYIMFBCyg0POHmjfQTWoyI6urSJJGNSKiooIsVKjxtpiUCl6QIb4rvn5+V2oxvj4eJROVW4ZKFgqyOru7g4OMdXKGHFtII0B1+dp+w3O8cbGRkQTQIY8koJBU/QVB14LCvQd9T2VGoHskab2OohndnV1BVSSdC3vCS9NHTLQG20xApqwvr4eIa7ID2dSESPeU6vDQebU4eZsarZEmwxr5bm2zEBe9UOQ2dDQgL0IATPZGdVB6Hfl6xGEabGUpub0rChHDeeTZuirq6vhHXnP0dHRqD8ahWoEy8iQEvGLdBAggtl1hFcpRVqJqUgcqLNyPxXZVdlRZwgZQn482ukdTuwm76lop3LQcOqxYZxNzifyo5xHdJBWnCrwQgsvEGVkSHWQrit/Ejyhg8yucXK16NGfS56LDIHY4+Cqf8B5xOlTEAKOeE1NTVToNzU1ZQ8//LCdO3duXzh4fWbWl+f5d7IsazKzp8zs75rZO8xsMc/zD93sd9111135I488EoQI0qkS7RXNUuImwqWl9MrN4UAoR0Srd7TFgd6/6Kv2tGJpeno6HCit2lR0RZt66vMaGhrs/e9/v1VUVNjHPvaxXb3NfKk+aQgfdZPy0fJw36hY05baWJV/v7W1FaWSUik1bduAofeVcZqu1RJ0FIK2rWCftK0KKSeq4JTPqJVYoDnKi9Dmy6T5tBKTFKTyJLUtAYgCzjuOiZnZlStXrLKy0k6cOBH2lv31bSlSLWVwxHgnLVjhZ9qdnz3Vthz6vtqzkShbbyogtaWtSPT9tO0EH0Ultfpcif16Q4O/lUDRBT2vGs1roAKKqFeuaSEDz9G2GyBLexUk6XNw3vX5ylHVYiDlkvmWRXpuQKs4O75JM2dH6SM4nQwcFS3+Qj+hKxSJ1N5uuq6axlMOEY27ceAICEFRtM8fH62iRp7MLHyHNqFO9QzjzMKTY86er+U/2pYK/ZnnecSPQ8erwwKlQlOUZhbkhudhwDHiiqgj52aWDM5wFsbGxqJKXWRXHSN4Z21tbdbb2xuQKeUEanCmXFtsCSlJUDEyQ8iuXp8Git3a2hqlI9UhU8cImdVsgaZB+ZAFm52djbi9Sknp6+uznp4e6+vrCx+c6/b29qATKioqwvmfm5sL70YK9OrVq5EN11ZJ6LrW1tbg+PX399vAwID19/dHwYsW+iiflTXkWVevXg2o38TERNR/UYNsHD+eNzAwENK+XV1d1tjYaG95y1vsO9/5zp3v4PmRZdkXzOzXzOyv2S06ePfee2/+uc99LhAjMU6qwDjgQLLA/erU4ahp+b9GshxyvcJH+Wg+JapOJDAw6SNF8DQ1qGkFfq7O1fr6ul26dMlWV1eturo6SldxsJkDc9PCCUj0oBKp52lKkPlqegwlpiTT2dnZ4BjAY4GjpH2FFOUB6cE406h6Y2Mj4kKxloqG6tU2PmLW5r8+NQVHqK6uLupBh0ykZIVmoigB7R+lxlVlpa2tLTh1KBOtsNXn+UoxCkI0JYR8plLY2rRUK41x/JSI72WT9cSZ0DZBWmSjspIKcLQlgt4YABqpaAfcI1IioK5aQONlxSOROGgEGTwPOoC+nzpMpGBwInierqWmqpUHSsCAk+DTa1rIwvtR0IBxVeoDKKuSzHGMtf+eVuDr3rGeOPzLy8vh3UgPY9D1/bSiEKcbJ1vbeXhZ4Xma+lciu6bf/XqSuqNwQNFOHC7/PPaP5ylxXrlbmjJUxAhHl5Qd1aK8nz5LecusJzQd2oTgcPpnIZvapJfnaX8+/zwQMW1SzPNwsuCmaUYH2QRRMrPQPUIpI34tJycng0OtaVDOHrKpPd+U84cTjH8Boqpnwaf0FVhQIIPv06yOPo930+I90vgg8v5Z09PT4XnK89N2Z576g+3TFjcMDTSRD2/XATLgq5INZD0149DR0WEf+tCH9geCpyPLsqNm9nUzu9/M/qmZ/UMzmzezJ83s5/I8n9nr399999357/7u7wZ+FIZG0Sw2hkNMhINzpkZbFb8idvwcBw+jhpOoZHQtK9d0jJa24+TBS1HSvxKHmRt9pUA6QAkVBVCkBSWT53nUjFcbeCKI2oYEojLIFc/T5qGgV9p0VluOgORomwaP4JBKY4B+KjHbN5XF6JEyNLOAuPFMRabYJ9Ai3kvb6ajj5VtvaHsRRSC1mMG3FuH39FmK3vB3bSUCksBgD1IfHdoWRJ+l7UmYO9/Jn77tis4XB0NblGizZ9oU6PfrGrC32urFtyLR1jbaxJdAAedbkVgMvKLs2tZH917fT9F1ZEk5WMgYvCPkS51rlWOMufLYFH31zc0VadZWI5qi5Z00VavIoBLrNfWt58OjgegfHE5FPvV9CFIUqVK9oC2BitpPEehh0JeXl83sOqldm+mqo0lw4h1O9kv506lgT1sv+WBIA0sQKp6re6d9SzXTAxKnAYo2/FYdjvNA2g6ivgZ8FDRpb0QCII+IKS0D51Yr3UHdQIn6+vqiwhPOHe+Fo+IRsdHR0ZBlWlxcjPicOJm8T19fn/X391t/f39ITYIyIv/QMObm5mxkZCQ8Z3h42IaGhiIgAroJaB/ryDNA3vr7+wPnvbW1NUIXsedTU1M2NDQUIW9Xr16Nep7SzqeysjLIQnd3tw0MDNjBgwdtYGDA+vr6bGBgIOJuarcAHMuxsTG7cuWKDQ0N2dWrV21kZMSuXr0aAoilpaWg/+rr662rq8suX768vxodZ1nWaGZPmNm/yfP88SzLesxs0sxyM/tXdi2N++7Ev3vYzB42M+vu7n715z//+cBtwrD5fLvvbE3qUqMnFBGOlnKLNJpBGaHMNzc3o2o0LaZAMajDgoMHN43ISSN7UETP+fviF79oq6ur9spXvjJEFUrO5aOGWFO/GlGAOsGJaWxsDIYDdITiBV07rYwi4sVR4EoYr/R4Lsocg4yTpY1IU2RnSPRUnrEuRGZtbW0Rj0dRQiV1swfKq9HKJ01r4+hpXz4Ug98vrU7NsszOnj1ra2tr1tfXt4s3pNwo1lgrnNW4I3/Kq1MStTowinzqOyEn2jKDSkc1ULpf8E7ZL0WttYIN5YoManSLIdzc3IwKSzRqZw2Vo0iqRrl7IIJ+DdmrhYUFdEM4x4pKKMIKAd4XZGkRiZcLPceKdtbU1ETnWDmmWpmuRVjaUkfbuvA8TWFqylTvQ1V0gDXESFIgA9KJk+krSfm7VmQzOMeKkqkuhJunqBytoXAyfS8z5AUHB8eWNLDqQuXHgXDizGvRj6ff6NmCE0yKnb0qOseadibYpSCDNVQUR5+VQnP0HGuRQIoHbHa952OKB+yRMZxoznFVVVVYP9ApdWoV4a+trY2aUGtlM8/z6WWCLe0RqwVaqjP4aF9LvSPZr5+mzxcXF8P6gS4q2qfrlzrHeZ4HJBpqgNpjbLJSazRr4Xm3Ku/KJaQtF1QE5FC5fdpIemNjw86ePWurq6v7w8HLsqzazL5kZn+Y5/m/S/z/o2b2pTzP79/rex544IH8P//n/xwqWPCglbSpC45DomiTthtQ0q9W2fm0LAdDIXAOBhGMIlt6LY86WcpnoR2B2fWUEJA7Bu4jH/mIbW5u2utf//qA2oEY4DhqBMuB5xkcGEUBlGelEbl2mVcSMaiV8o04AFoNqWRwFIpHGlQ5YjxBtGhe6rmJynXSFDZGmnSFpix4Bu+qXBFFG7XFh3ICicC1JxaylOJuPfvss7a1tWUDAwO2tbUVoU16LZNW2vH/GUqA1oCFCNHzwxTJVBRISesYOL0eTNEs3kO5jRjTjY2NCLlUNFiDBPYMJ0OrYbUIQT++TQbGAQWu7WWUHwqdABnDgU/xUTUgUWRWW8r45rTQMtgbDB3okjqEWpyCUgcJRr5AYLQHGw4Mc9Bmy8rn9Y4SfF4NHD31A5SCdDc6QRs86403morSwiLmgc5Ab2qxhL/aCdSRikr0pjoTtNTQSl2cWh+cajUj/DH0AT1JzSwE3KwZSBKI3OjoaHRrgXIqcVh6e3sDeqTvxTmuqKgI6zYzMxN4WqBVoEc4STgfFJlQINDf3x+QMZA4LXRTKgL7z/cPDQ0FRG5sbCyiPmhxG2vV399vhw4dsoMHD0aBFfoc5xIu2tWrVwPyBjqmN2+AkOu6gYYdOnQoQvvU7hDgTE9Ph/24cuVK+PCzmZmZqKce+qy7u9sOHjwY3ufw4cPW398fnD64mSCK7APvwXPg13GGtcgKJ7mnpyc8g3fq6+uzjo6OgIJr66OxsTG7evWqjY6O2uXLl+3y5csBuXz22WdtY2PjznfwsmtQxW+Z2XSe5/9Eft6X5/nIzt9/1sx+KM/zd+71XcePH89/4zd+w7q6ukLapLa2NhiTpaWlqFIGWFqry/RmA4y7El+VANu60x+uqakpGPqNjY2oRcbIyEg4eChKVcRKfqdSt7u7OxBftUUHRtLMbG5uzn7qp37KNjc37Wd/9mejsu/R0dHIMGuXcUW4OOxanafpLe01x9z5fhQxsDgpuyzLonUjdaDl7BjlhoaGqL+ctlRh3RRdUNSO6KmxsTGqnOKdMJqtra3RXZ7aJxAlr6X66pgB4WMktQoXwiyKBFnzRN2pqSn7whe+YPPz8zYwMBDSIB5d1dQVEaMvycc5U64UwQUR48jISCRr2tpBG7wqh0jlTdFOvV8RBw9FzJrx0WvWQM7q6+sjxwI5YN1AEjQKZt3YczVayAfEeBxZrTj16waaBeqj7UcwuHpuNADknEJtIFhi3VQnKLqkTqa2OFE5g6iNUwuPzcyiIEkdGEWklROo3F8CTHVkNO2Gk6D8J10z3SOcCwqqKF5g3ej5paR+DP7KykrgANbW1kZtPEjxadWhUlCU8+T1Gvqaddvc3Iz4aug3LRzQVlaa+sVhUCeWdaN9BggPgROFQjgXPIOPdh/Qm2bQk9PT0+EZ9IejRxvrprQWzUTgUGhVKoFzdXV11AdV10v1NU4b1bYVFRVRGx0cTD1DygllzVZWVqLK0+Hh4bBuOO3cg7y5uRn1MPRr1tfXFzVvN7sOaiiXnRSvniMFA1izhoaGqI2KpnYBUkDQKyoqottKWCv2Z2RkJKJY6fWdyC4yPTAwELVP0SBai5smJibsve99r50/f35fOHivN7NvmNl/t2ttUszMft7MftLMXmnXUrQXzey9OHxF4xWveEX+pS99KUQfRIEIBgoPxaqFFaAN6vgQReGU0OcG46odzDm0IyMjUcpInwFfxzsjKCF9BoZfb75QxTA5OWl/+qd/apubm9bf3x+4GaAcGDtfHaXGTpFBrcTiGRgL+tXRU4x0jJbdq2HQrveslV5945UOafLUWmmKxj+D7va8h6a5aGHgn6E9yjBw2vpCHQMUuT5D10oNjxYOgDqAOi0sLFhjY6O99rWvjZ7De0Dq1Qid9/DPgEeCwdG2LKn3IHWhz4CLw5wVzdBnoJx5DxwP73hqegRki2dwPvh+NQDz8/PRMxQB5kxoCwtkgmdQ9aq9rXiGpvO1TQZ7qs6gfwZrpS0c/DOQK57Be2gRBe+h74Jc8R6goZD9eYZyonStNBgg3adnnHfx74GziW7SZ7BHVD5S8AIC39nZGRwmbT6rrWHgIPMeBIMgGIo2+vcg2FCnjGdpg3XeQ58xOjoakDItAkF/aiVuV1dX0OnazFZvCPFrhdMHUqbP4LxmWRa1JMFJ0mdoBgC6QtEzNA3LOc+yLOyHOhRaiappXuUSahNeeGKa7tVG8NggqkAVUeRGEwpJ9Jzre/AMzZihd8wskl2cLz4gsTwDuVKHUt9DgzL2TsEZzgccPv7U7I8WhalcgfJpMIuN2t7eDjYIriCcPZ6jWQaesbq6apOTk/b3//7ftzNnztz5Dt5LOQYHB/NHHnnEOjs7A4GfyIZIWg2m9vbh/yuhWq8M0ihaeQzwRjR1hsApkkK6ZnFxMSKIK18Hx0/5C/oMTdFNTk7aBz7wAdvY2LC3vvWtwREjXWcWd+r2ndhJ08IlAI4mOiN9otfgkHImaiqq9tJml9qvi/3Q1LZyBeHC6S0USgZHeaXSZ77oBTQ1VfQCL8xf1UU6wxPO+X44TaTotJBHb5ngGezHc889Z1tbW9bT02NbW1tRGli/W296IPKjZQmoE2uj70EqlZssfIoepa1NnEkFU+3H0HuLQR14l7m5uahFCZEsDVf1NhL2HodKU7R6ewPOMnuvNACqQZF/lWNt0aGBETKvz9DbEvg7VYRwRkGbtBpa6Rn8DJQWPhYtTvbiBPoqWr2lRh1xfkbLBq9XtEchCKDqFbPrLWqUR6mOGVwp9GNVVVVELVAnWR1yrx+rq6sjPh4GjqxDZ2dn1CBbb0PRYJgPe7K4uBiq4aurq6N+fEp+R4/pM/SGF1KK+ie6BSSGc6yp3kOHDtmhQ4cCQk9WA7kC/Z+ZmbHLly+H9CjP0fcA/a+rq4sKE3jGwYMHo8wJKW8FJzS1x7PYj6Wlpai3H47ewYMH7ciRI3b48GEbGBiIsgwMOH2Tk5N26dIlu3TpUkhVXr16NVRJLy8vB5S8oaEhpF0PHjxohw8ftiNHjtjAwEBAFOFF5nkeFahcvHjRLl26FNaMFC/ZNW4qaW5utoGBgbA+R44csSNHjlh/f3+wKfSB3draCgHR2NiYXbp0yS5evGiXL18ODrOmdtFTLS0tIXV8+PDh8NHMD3aKjBzAB2t16dKlEOjNzs6G39UOB3w/74FcNTc321vf+tb92SblxYz7778/f+yxx4LyRcGqstIUDLwLvRhbHS0OvU/zeFQKFIQNVyNCZK9EZZSupl1wSqlC0r596jDimM7Nzdl3v/td29rasiNHjoRO7hgPTe1oCT/KUDk9ekiIViYnJ0OVHylRDoimqDAe6pxwwLVljK6Pj4JxFnAGNCWuiJT2i1NyuqIS7DOw+vz8fMQV0kauugesEdwl7cFEGg/DqmlJnET4f6DAiqA+//zz1tDQYO94xzustbU1yOvW1lZU4KFX62haGuVBeqilpWUXitbT0xP1BGNdfQpKn4ExVCdauZrqGGC0lYOqTpRfH/YAZ1F7xikxmn5YWhkH9xBjp323kFHeR69owxAdOHAgQn1ZH23zoL3ENLWpvcRwcEnTwgNDgStlgz3nxhEuMcdBU6RUHTScAdA/WvxoYEk6U29TUT6jkvC1DxrUE3SJmYW0kRaAqJ5TzqwGLxSXcI6Hh4ejgIwghCIJgkk9x5wzJafrLQOKNLHP6CiKCGiYrpWPOJbatoeAgkwLTpPvEzc+Ph7WZ319PbouUnWP6jmQMq2o1CItXwELEgefWHsXKsKrKLKm9qAX6ZzVueCMKHCghSMenOjo6Ihu8tDuC7o+qufYJ2S7rq5uFzWGM6YpauRCgQLmDn2AgiXkDUQVrqW3AwTa8BKxBehNzUhQLKfp/CzLQiDqUXbWDI4gwAq2QNPq7AN0DoAVbKUW7ugetLa22nvf+1575plnSgfvVsapU6fy//gf/6M1NDSEtMzGxkYQIuXBUDFGqtbMgpOBs6LOFwLBlS+gXShwfYb2aAOp0mbC2mQSIVOhxQHTfk04GkoSn56eDoRqSLsoKEVtfKsVqpmAmzHSROnaQwgiOXwF37xW20Rog1Oz6+1O4AiByqlC1RYhWs0J+kSUDapBJK0tPDDUvI9vc2JmgazOe2hLFf2gJEG1itqFoLC1hYq2UjG73pKEprjwZVQR++fpNVUUcWgbFz4YF32ebx3CWuJYafsSv36sG1WhpJHYf70yiO+kmlibfHNVD8pd24T4DzdGQKLX1hYqXxhUDItywpBfkDS9J1eLqEg7aoNgRWeVVoCDD1K5tLQUnT29DYLWKjiwIKZUI2tDXoJE9hkqCfwfrdLVHpbsgfbVUt4szhprRhqQtVEHH8cJLuPc3FzU8gcnSdtuKHdJK0q1UbLSR9Q546zrDQCaiiWlRUsPWlEgk2qsNWXGOum1jlpdCUIDL6q3tzfQLcjqYPhpcQFKRnoR3U7xAChZf39/QLAg2+N8a2ofWs3o6GhAfS5fvhz2YX5+PpxDvRkBZAx0jOIOvUGEuQ8PD9vly5cDAgfah1O7sbERbEJnZ2dA344cOWJHjx61o0ePRpW8SkXBEQMZu3DhQqA6kXbd2toKDiVp3WPHjtnRo0cjpJL1q6qqioofQSh5xsWLF0PWYGFhIcpC0DT48OHDYe5w67q7u4OuVrm5evWqXbhwwS5cuGBXrlwJyB72Z2trK0LTWXcQt0OHDgWufWNjYwhY5+bmQpGGzn98fDzoB81wgK729/fb0aNH7dFHH90fHLyXcuDg0fQRQ69l2CnPHt4XfA3SG4pQcYC5SqaysjK0bPBEbeWu6VVdGCrPJ6PSjANsZtHdiNoRnT+16SeGRRW/cmV8JRaOYwp91KpZMwuOo7Yt0LljwHC+QF1ShHyQSG30jFOrlXGKTDFvJfguLy9H0Zqidjjt6sRpGwklQ4MYVVVVhehaU8WpSFNvxtDrgBTNUYWJw4CjAOKoiKmS+ukZhpOjbQ7YU+UH0t+Krvbam0mRKJwe9ogKTo/2amqdtKK2DFEkWdv/6NVpIIkdHR27OG5qqLSQRzvH69pouh7UwV8TpAgX+6HOq/Iyx8fHQ0oQWSdFD8+J/myKPrEPOOk1NTVRZbbfT5APDElNTU0wcp4nydxx0PQWEW1HpMVaWmSgHQA8asPtC6S2GMvLy8FZVV7hjbIPyutl/bX1C9dEetRSsyd7ZQY0cwLBH5I/QRtOa0p3pVB7vatV546eJ+gys/DvlW+pV2Ypog5aTDGM6q3u7u6oX6Heo4yMq6x7Co+mqH3GBN3CNWMEMJoNoBhBG2+DRG9tbVljY2PQf6mbM+ifV11dHSrRQREVxeL7eT+9nYj9TPF1cfbQG7PSvFuDBIIQKuorKysD/xs+MOui9BMzC0EaOl3RVV+pTRCuTbO97urq6gpyrvQJqA2pDA9BIHIOB//rX/+6jY+Plw7erYz7778//9znPhdKon21F44dfdtwdriKrLm5eRfcTNoFJbq5uRnSBjgYeuciBoN+VSBn2ptN+UMgInCTEBjt08NHkan6+nqbnJy02tpae/WrXx1V28Krw7mgGlCVOkIPr4rvxlmk0lJRDpwtDr6mAf31ZAg3yhCjSNsOf5WTcmm0sbJHFjH2RI9mFg6dXjumV4CpAtcWDXwvjhWcP86NNs7lO7VJM86S2fVKRr5XrxEbHh627e1ta2trMzML64tTznfrHY1Eo9qIV9dAGz6DwNTW1kZtPlhfomC4ifQOA+Viv/QezfX19ahZMVXPKgvaFFvTVdrOQ9vr8B4EA3rLgrYnwjDi7PhGt7Nyabimyc2u806RW3i0OPTIB60gtGeg0iHgmy4sLIS1gEyPw6RpNeWaaiPgFEWBZ8GbA931DjctGOAZkpYlrcz3UmSgqX0MuVZJdnV1BURIHREc5yzLgl6YnJwMnC+qI0dGRqKrHPXKMm2HATJH4UJdXV3g+M3Ozgbkg++Hu4aOUoeS7wUJOnjwYHCeSJNyJvg+UJUrV67Y8PBwkEVS7PX19dbb2xs4fUePHg2IDU5PTU1N0BNTU1NhviA1ly5dim5N0Kuq+N7Dhw/b8ePH7dixY1F7Gk19s3eXL1+28+fPB5SMIEHPtnLsjh8/boODg4GT2NvbG2R0a2srOEhXr161c+fO2fnz58N6XL16NSD029vbwS719fXZ8ePH7fjx43b06NGAmGn/UO2Dev78eTt//rxdvHgxtBtRZw/KUHt7ux07dix8L5w3UOcDBw5ELbMuXbpkFy5cCOt86dIlGxkZCfpaOd/K0wPVO3jwYOQAox/GxsYCYghaeOnSpYiKATe6o6MjyB2I4fHjxyPeLyj53NxcQH4vX74c5o5fMD09HcAGUOAXXnjBZmZmSgfvVsbg4GD+8Y9/fBcxlshmamoqUio4Z9o+gNRNe3t7IJQCkYOGKQEaJ0k7Znvy5fr6ekRE93fUgZzglGkPIg4p34uy5aoyM7MTJ06ERrhakYRC0Lv2lHfHYVeyM6Tw9fX1qLEkc9YKMU0r6z202rGc7ydCJZrBGdOO6Hz0ihoi9pWVlV3d0FGESs7mgMLNobJpYGAgGOKmpqaoLQdRIxVgVBdSGs/+cX2d9pLiu7XQAwPI/j3++OM2OztrXV1dNjQ0FKXZSac2NjaGiBElfvDgwYjgT+CwuroaIkWtWtOGmqTRqquro0pn5qstKrRBsvI9SVspskPKmw7wRLrMly76kLpxdrT1ifbS0oCLAcqtvbQgi8OHBaHBAPueYIou4LTD/2MPcRpwdDo7O6N7cUmVshacQfQGwZaZ7XKiWAvQC21Szv6r48C5Hh0dDedvY2Mj6KO2trawDpw/eJfKiURvqJ5TfUR7Jm1CrmdEHUtNCRIA0BNN9QaoPNdQoTfUodSqUpwsNb6Tk5NRUQQ8P1DvjY2NEGChj9AdPIMg5MCBA0Fn+FsUmLvey619CTWVxnfT/oaKS4IuQAPVddoyiDt8a2pqos4MegZxRLidiKbhoFh6Bn2PNlp1oDfUXmmRHnKKPmIPkWkQPhB+UHL0Butw8ODBACQoSr6yshLOG/poaGgo4lprIZPy0rQXH/qE21K2traCMzk+Ph6tBXqD82dmEaqPPoL3hj4iIOf8oY+QO94DagcVudAtVB9pU3Et7lIUlTnzDlR4Dw0N2draWung3cp48MEH8y9+8YshLcvB1ogRRIEedJAhtcwZ4VAERCtL9UDzpyIritqpgkNxKIlW+7Lpd6LsFxcXg8MArM73fvWrX7Wamhr70Ic+FIoQ4FpRoTgzMxMpZAy4CjAtNtrb24NzodfdNDQ0RP3DtNcWa6GoBEic9iPCIerr64sa1CrPSVPR7N3sTl8tFDF9jnzLBgjQoEogVFpkw/tTpIKDB8eDFBTGSInzvJM2ztV5aloe5QQqMzs7ay0tLfY3/+bfDOsK0ooDxNU3pJ34XlqWzM7OhrRzXV1dUGTqyOqVOoqu+nUlnYWB4zup9tN1JfWhpGaQZk3taZsVvfZPrzhinnqhuVZWpxqronAnJyejnoHKFdMgDCWPIsdIkHLDsGl6eXt7OyhoTYejyEmhtu505AeV1pQP36sp8e3t7RAYaIsO/V4NONAxisqp8eEckGJTJ4rvRN/gRMF54jYJbezKM0D4Nzc3g37p6uoKHDO+E+eMPWP9JiYmArIFRwtHlcBBCeeKtBB40JDWzAIySfXlhQsXgtM+NjYWeHG0cgHB4nsPHz4czq62wZidnY0QM1Aczt38/Hx05RjrqegQt8e0traG/VIeH4jTxYsXQyp9bm4unJ+mpqZQ4ap8L9KiTU1N4frJ+fn5qGoT9Ik0N8VdBJeKZIE+dXd3RzoRm3DlypWANGEfx8fHgz5WasvBgwft2LFjduzYsSBrvb29UVYLuzI0NBRQPWwOGQwuFNCqaP1e9I32D9TzdeHCBTt//nxwpMfHxwNKXVlZGQX0+r3oBPQMHD3sIjJG9TDcVz27nIMitBdZ4IwNDQ1F3EjO4NramjU0NNjExMT+ucnipRrHjx/PP/7xjwfoF6Wt3dJRcKA/Owsd0nJUWCohFVSJ9gLKeeA7EBatLtO7bUn/4kCos4NjotedKLeMQwJSBR/p4sWLVlVVZW95y1t2OTukUxsaGqKGxalqR62SUnTN9yEjWiHlp2k+5dqw1qBfykGCPwU/SEnoauyB4zUNTsNLuEcYe7iNyvkAncIoa3d2LjTX78WRUkK+kuX1eznYFKuYWUByQXz43tnZWTtz5oxtbW1Zd3d34HlhSNXZwfHVS9GZqzZmVsNB+lv5o1qFrH0JaS/A+iqPSTkvpJdBnaj81lQO/CgQE5w6OIb6naOjo0F2V1ZWQnDT2NiYdNRJ/x44cCBUp1HBhvPAB6WJo076X/t3aWNy0C5oBbOzs+HuSDUcU1NToYimpqYmyJOiqyoTpE+pWgZRRN8ojwv0EeNBM1ZNXXEumMP6+nqERGE8kDNQW4ySoi44E1rtrjejXL16NcwTg0RwSUoMvimpR4zc4cOHra+vL+xXnucBoRweHo4cNPQuTkSWZcHxU6OsTiX6c3t7O+yNph0V8QPNqaioiIz94OCgHTt2zA4fPhzOm6bo2fsrV67Y+fPn7dy5cwGBmpiYCK2NWFf2iXTmoUOHomb0nB/en5Tj+fPn7fLlyyH1v7m5GQIyihMoUMCR0MI7rUJlntriBG7z1tZWhIAPDg7a4OCgHTlyJMguVJDKyspgZ4aHh+3s2bPhe5E3KrCzLLPu7u6wN3fddVf4XtZVr5xUBPLs2bPBoaRAhjNLqxrWlXTukSNHIv4otoaAgnXFodZm66xrd3d3WEs+hw8fDrSgmpqaiJ7BHEnxA95gxwA9+F7kSsEb1tUHKnzv2NiYPfXUU6WDd6vjgQceyB977LGgZIj+FcGDf4bTQdqNKFAjYW3kCdcHbopGwGNjY1FVqKZr4JCACHV3d1tVVVWYM4p/bOz6hcUgLNPT02ZmobO5Tzt+7GMfs+rqavvN3/zNcK2R8g0UucOhBdWBpwTJFsWNU9DV1RVdYq5Eb4yBtgEg1VhXVxeMNetIqlFRO9AIj4SC2sHjoACjtbU1KCftGE56A94lRhSFTXNSuDKkIJqamoJDoagtikEd41npq6UfHBYUivKRCAx6enrsW9/6ltXU1Njb3/72cPBB/DTgAElgf7Isi5pJk87QwEBvziDNpQgzSAqIrRb66PexZ6QR6WNFoQyyqS1KFPlScrw6QHDh4BOur68HlEcdK9rygCgyT3VUtO0PnCBQCU2JXLlyJeLSgQhw0beiXocOHYoKS1DkS0tLu1J7Q0NDoXp2cXExutVA9QbrScuU2traUCmr/dO0GSwp6u3t7VDM5KtBtdALFBEHFZSDeerVctoahQpQzSjAo6yqqgpOr0+l47BT0WsWp8To9wXdpKOjI9yCAsKDU+6vhlpcXLQ8z4OTiMOrlBDS3PX19SHlD4qusklhAc5bVVVVKBxANkH41ImGP8p3aKqRYHVubm5X3znN0NCrjfeAVzY/Px/0Ec4oSC/OkLZ+4fzQJ4+iCoLPxcXFqEqUeRJkLiwsRBxfXUdkVK8r1C4NuucEVHCe19fXI4QXm6E9A5WWoQ4Oeg797m2wz6IxZ+3+QMbBAyrIP2c3z/Po5iGljzBPgvPt7e2IlqKyRIBuZqGwgjS79jSk6I0WYfSt9DZ4ZGQkFOqcP3++TNHe6jh58mT+O7/zO6Hcm6rLVCpJr3CCA+WrxKi8UididXU1IiJrFZRWKnJVE5G/NgVVsj7og1a1EpFjTKgGJD3Z0NBg7e3t9vnPf96qqqrsX/yLfxGQH5AE7d2jBRXanoLfVUMF2kNqGgI2BoXecxRR8AzmCNeJtJ8WO2hxAg6MtuhgbuwL0SgGBYRPezHBW+QeUpxSkCo4M8gCKKneP0vqkzkTrYP2VFdX72r9gXxpUQLIhKYSq6qq7OzZs1ZVVWWvfe1rA3rFc/heLSzRljK6HswXrqGirUSk8InMLKCA2rwYQ6XtarS5N0Uf2niZIIfonHXEGaB6kcbOeh8u+0+xA6mo1tbWcNcy746MatU7aAfFGRCVqaJTdFkbRFPUoc3NCaagKHjeLYEeDgVnt66uLuypBo4alGjLJWQdHq8aWOXEVlRUhHfGuNCkFT2FUSd9jIEBjcDhpYAHOdS7NhXtQ0dVV1eHoATURBEeUlpwjXnnixcvBvSIdYVEDppO4AAx/fjx44H72NzcHHTG1NRUaGEBcnLx4sVQ+LWyshJVkN5111121113hfTuwMCAHThwIKR2NVV+5swZO3PmjF28eDG66QD56O/vDwUQinChA7MsCwHOlStX7MyZM3b27NmAyF25ciXqkMDeHj161E6ePGknT54MDm9fX1/QRysrK+E9L1y4EOZJUD87OxvSrs3NzXbixIkwP+YLn6yuri7wIsfGxuzs2bPh+3AsZmdng45pa2sLqdvBwUE7ceKE3XXXXWGNGxsbg06fnJwMRR/nzp0L+478rK2tBbvW19cX0DzSw6CE2E2lS4ESXr58OciV3tGtKLGmWgm+cfBJjSM/yDvOHlxF9MOhQ4fC9xGEdXZ2RlxCgmPQbOSHAiFtQ8Z7EoAdPHgw8B5BHDUlrs7jE088YUtLS6WDdyvj7rvvzj/1qU8FxwmlqygRhx2OjNl1Ujd9fLR6iPQpxpCIWfs+AWNTmQQyRuoBNINIktL2ra2tiB+lcySlpVeD6fU0FDlQFl5VVRU4gsrnA3Wg7xUOG21JfESCowDqQL89TYUQJePMmFnkwOo7g76ZWXBelGPG+hHZ0LIG5EeRQBQR3DXSTNp0UknU3O+orViIEDV1p7wi1koLcuCWcVcxzhDoGvxCeGDa7gIHm7YiqTQgldyKNPDOpIRBl3CwNV3JWmq6klSldzK0qz36gUgbtJt95vzQfBQETPmUrKEif6whMn3lypXofmZ1pjU9yxrSzBcUldSLOlTIIAVSkKFZQ5Cqvr6+KM2DE65tcEDpRkdHo3t7MSjINMgxck7PQopT/DmG1zU/Px+Qn/r6+sDx1MKDlpaWELxwaT3IsX7f5OSkrayshLQ8LXrgOHrko6amJjj3/hynUDltIKxkcnSamYWgTNPlrCF3t66uriYLOehbpsUyZhZdd6UItN6ggnPW2toadCBr2NvbG91kQ+Ch51j75xGAZVkWtTjROWqlLpkRLapgDemcAO9W0/noQr3jGeeDc6zrp4Vuq6urUVNk9kMb5BMkZlkW5EP5ZdpqJM/zQK/RbBBr2dnZGYJbOIs0P+b74K7OzMxEd05DV1CkUHuwErBij/kgg5xj7CfBoPI/QdrpE6u3TJBi5jsJ8MwsumCANdTCKtZvY2MjZIAIuJBp5JAuE1qQo1ffKYVJwRVF8iYnJ0sH788z7r333vz3fu/3QnduBN7z4zCEREG+YzybD2KA0QK1U6I6joSmKHEWtVEyBRA4Ykp85tBgyCC5wn8C/dCmyGpQtfmiNlkGuaHHnzZhJUJEIEHVQBOXl5fDu3FbAIYPA51qS8KVO1RmgkChtJaWloKjsrW1Fd6DFh8YQQ4JRpQUHxVs/KnNkisrKwPyBpIF0Zw1QInQ1Jfvwmhx2PWaIb4LTpq2q8CxZ820T5bZddSRKj3aofB9vBt3OiraRvUgBlhRO/ZOe23RIoFGpdq2hshbuYvsG6lldaxQ8hRV6HViOHDr6+uh1YJeJo7Mt7W1hZ/zjihlvdILpI49UDlVRJ2ARlOU2ptPkXqVVxxkAi4UPEaEK+c2NjYig6tXQ1FAVXQVETqjqakpyCMNgEEEIMnTMmRzczOcxZ6ensAVwjHt7+8P6eXNzc0IXYDTNT4+HgyxOlQgFXDaQBdA2ggCh4eH7fz584Ejxd5osVhvb29AkOCHHT16NDikeZ4HqsqlS5cCiqT3eNbU1IQzwHfR6uP48eOh80F9fb3NSl/R06dP2+nTp+3s2bPBAaIBbk1NjXV3d4fvAOEbHBwMGYmKioroSq4XXnjBXnjhhVAEcOXKlcDRra+vD+92/PhxO3nypJ06dSqSPb296Pnnnw/vCkpKSi/P81BQcvjwYTtx4oTdfffdNjg4GF14j+MwNDRkp0+ftjNnzkTcOkXDcRaPHTtmp06dspMnT0bVnPBV5+bmwvfwuXDhQnRtF4FkX19fQBwHBwdDsACoQbUwaB7o7eXLlwOHE24eKNmJEyfsxIkTERih99ZqY2C+c2pqKug87eeIjBw5ciSciQMHDoQzhjOriNuVK1eC/iPwIyiAN6cBqra64vxTMHP58uUQqM3NzUUtqLQIibXklpmKioqo7RKI+sjIiM3NzdlTTz1ly8vLpYN3K+Ouu+7Kf/M3f9O6urqiajfl+gCTUlzB9SvKfwAexklramqKDIpyXYCFcRbW19ejKJjvAj3p6uoys+tRMIiJcsa4umV5eTmkt9rb2+3QoUOB3NzV1WV//Md/bLW1tfYTP/EToTdWam44bXATKK0nzaMNl2myur6+HrV+4bv0ijcuhm9vbw/vSck790TynkTSypOiMhASL04GKSgI50RaOGarq6u73hOkEsPObSHt7e1BySqnpa6uLqqGVPlgntq8k++CZH3kyJGoapOofHl5Oewp83r22WdD5d/Kykpow9PR0RF1rOe79IJ439LgypUrgfNJ2pIAIDW3tra28J4LCwvJPVUuofaNQ9YwIrQR0XOlskulI+tGG4eic9XS0hLec25uLmpjwfcRiUNwhjbBusGrIRJnbipr2raB91Skheq4w4cPhz3QM68RuH4fsru5uRlkV88VqEhnZ6eZWaAHpPYA0rme+Y6OjkA858wTLLJucA/1u65evRrmxpnHoGvBBd+nN87o3Ip6m6HfUmeeNkGgIewD+3n16tXo6jQCVz3zOjfec2VlJToHyjvTM8+5oncZ54q2L3yfnnk1vnrm2VMqadFHfJ8icX4POFecU+Vl6x2uWuHJ9yl3S2/vQHb1XPX39++aW2tra3hPPfMquxq0Ix9F9gpbur6+Hpwf/b5bsaWKYBbZUmT3RraUM0/mLGVLCVb0zNPjjrOlKWreEz6i6hBsqZ55b0v1zO9lSx977DGbn59/UQ5e1Y1/5c4aEHTxxLW0HIInToIWA8AXoQwedAvkQ6uhIK6T2iBVon2T4DkAoXOn4NTUlH3ve9+LSqhJJWgqkfQSkTzFABBDaWT5+OOP2/r6eoCn+R7SGW1tbRGvhvQX0SPR3OTkpH3nO9+J2rPQlkJL2w8fPmyve93rwntSjHDgwIHoyqXvfOc7IRUJ4kM1Yk1NTYj0Xvva1wbEtK2tLaCI2tvsu9/9btSjD1QL5BAl9+pXvzo0kW5ra4sQI9CAp556KqrqpEKxoaEhcLr6+vrsla98pfX09AQEg7YzcFNGRkbs29/+dtTcGpSwvr4+RME9PT123333WW9vr9XU1NhDDz0U0sCkK4eHh+273/2u/dEf/VHUz49Ikaq1gYEBu/vuu6MrhbgPWautn332WfvjP/7joCA3Nzd3pd0OHjxoJ0+eDHKurU+UZH3mzBn75je/GebEHY5akHTw4EH7kR/5kYC+mFnY85GRkXD+Lly4YE8++aRNT08HBLOpqSnisfT399vrX//6KArW9i5aMfjss8+GCk/Sh6AbR48etZ6eHnvNa15jb3rTmyKDwnz0iqTnn38+rJWm6kCZ+vv77f7777c3vOENUaNz0AdaLFy5csWee+65sFYEZTSmhUN16tQpe/WrX21VVVUBXYKbBH+KvQSNbmxsDN8Bknbs2DG766677J577rHq6urIaTlz5oydPn06tAG5cOGCbW9vByTqyJEjduLECTt58mQwdlQuIleKsMBBY1+XlpaCjPf399upU6fs1KlTduzYseBIHj161O69915bXl4O33HmzJnwnVAfqCZFDninU6dOhfPd0NBghw4dCg7t888/b21tbXb+/PlIjw4NDVlNTY2NjIzY+Ph44JrBm6KRNj0KSWebXbs9iMwMqHVDQ0O4kYg+bu3t7aFZNvxkilToN0c2BB4f6Pz6+npoH5XneWilRAsiEHboNKSH+Y6lpaVwXRwZgNra2pDWBJnmd8mUkNHCQVtZWQloP1e4UXCH80lrIAqZ5ufnQ2GY5/mR7YLSAHoMuqr3rJPavnLlip0+fdrOnTsX0afIUnR0dETnhkCHW3bMLOolSeNlrVTO8zw4mwMDA3bXXXfZ8ePHgw7r6uqKbtNAJ9BGB0ed3+nu7g7/njM4MDAQaCB5ngedrG1zsGGktsnwvJhxRyB4WZa9xcz+vZlVmtnH8zz/YNHvHj9+PP/kJz9p/f394b5KyuDxwHHUiIiWl5fDtSqgFginXrDO7wL1X7p0KUQyV69eDYfF9+PBswcVgMhKbl5hZXg82qJC27VoA9Wamhp7z3veY3me26/8yq8EZwEBnZqaCiR4Uqmtra3B+YRI3tvbG64wyvM8NKv0FUV6CwEGlSqiQ4cORe1OtMO38i0QcpCM7e3tsO7aLBd0p7m5OSBPtHPA+YCDRUNRz0dS3pkqF71aTiNQOGI4oVolp1wLLqGmYS2pRiX4AuebXeN3zs3NWUtLi73hDW+I0nlU8HG9E+kB7X9GgQGRNvdtYpSVZE8R0Nra2q4eagQAGBF4p6w70SwFNlTXQSPAIWLtx8fHzcxCM2WtIkUmKFCADE77EEjmVGKTOiLFr0UE2oAXx2l1dTVKfdJ3i95+S0tL4boxjA3tLHDg6GkIasU51IIEnD7SlCh10kbsB04AXEs1NKw9gVJ1dXVAXPiuo0ePhivcWHcCkXPnztnZs2ft/Pnz0XVZBDgYLdJYrL3SGtTJPnfunJ05cyZUlS8uLgbnv7e3Nzh9x44dC2epqqoqUBAuX74cSPLs48jISAg4GhoagiE+fvx4SNdBLWloaIj6aJ4+fdpeeOGFKHjG8amtrQ0OgqZ1u7q6Iq6dFlaQziWIWltbC/t08OBBO3HihJ06dSoEvgMDA4HPtby8HJxPUpFnz54N6Orq6mrgaff394fUJoUPINx6IwNOrbafIXhpbGwMAQkp5sHBwbBOBw4cCHIwPDwcUriXL18OnF5a2PBdODCKSHNuZmdnA1VA07ekMzc2NgI6efDgQRscHIyKRXp6emxzczOkgrVAhvMzOzsbdAxZBd+qpXXn1iguIWBerDkBzvj4eDgzpERB8aAzKOdNm7+zh2R2pqenQxNuAktAHXh+7e3twQ7Oz88HW6O9CHGcNzY2ImScfVR0cWtrKyCbgEw4o1/+8pdtcXFxf6dosyyrNLPTZvZGMxsys2+b2U/mef5s6vcfeOCB/HOf+1wgAGvET3UaXe3r6+vDxqpTBypVV1cXjDeK9vz584HsDGoDCRZvngodbr3A85+cnIyiAz44oVRiYSD5LqLFAwcO2OxO373x8XE7f/68ffjDH7a1tTUbHBwMDVsh1/MdRBt0p6eCFOdSI5XLly8HuNvMIsIsSgNkq7GxMVTCTU1NhfW5dOlSMESKtPX19YX5KDcDZbC0tBStjUZP8KO0E7y+G+9MOxfWmkMOSrK0tBQ4ZkRix44dC+hmf39/IM2vra2FQ8m+gRSACFFBpu+mrVa2t7dtenraPv3pT9v09LT19vbahQsXgnOK8020SiWjOjZ616RewUSgMjk5GdJrFKX09PREvaRwlumlRSqf9UGZTkxMhBYPzc3NQWnpfGhTAe9KA6eLFy+G9DEcV/hzR44cCQYaDlt9fX10nSDzgcA+MTERUNEDBw5E/cG0GTlDuS7qRGKcq6qqQtTOfDDOGB34bHoVk7bgwPmoqakJc6GqE6d2R3eFdSaSxxASLG1vbwcEW1E+2su0t7eHqueZmZnIcQS11YbtXGSujl53d3dwKBYXF8N8OB+XLl2y+fn5UFnvr60aHBwMTbTb29ujRt84QyAUo6OjtrS0FIKknp6e4MgqXwnOG841gSnOwqzcekOqtre3N6zPwMBAQKVBGxVxvHDhQuBRgi6BvFHlqc2A4QFvb28neY7wwwgcMOA4nYcPHw4BLmg/qVG9fmx4eDgqMqKCGYefD7zhysrKiAbBd1GUsLCwEHQH+oNKVqWiMPeRkZGwPhr48az6+vpoLugivZcWBwruJu8GYqbpY87Y4OBgRHcCzfR953hPMwtoKXvEnh05ciS6+1iLpZjPpUuXwrkxs4gmwp5BA2hvbw9Zr5mZmWg+oPJ6e49encd86P/H/dTMh8rjixcvhjOzvr5ubW1tONb73sH7H8zsA3mev3nnv99vZpbn+S+mfv/EiRP5b//2b1t7e3uIyBYXF4NhVEXN/YFVVVVRxRPkSzpqQ8zHsdJqJ0VX9I5KnAUEWlMACDYKmuhieXk5XDINhA+CSPqQQgGza411/+W//Je2sbFhf+/v/b1w3ROoBBcbc+k7KA8/g0sFTwMCPdHcwsKCmVloIaIkej6kJaqrq4PRojiD/lZEMGYWFJveRaukfi1eQAkwH4ozKDigpJ5Un/Z1ouGq9o3yd9pyjyvfRXEH5H69R5NrhEATOaz0RiRVmGVZSFPwaW1tte9///tWXV1tb3zjGwMawlwgbFMpuLy8bGYW0hQgdkodaGhoiAogQMZwbqempkJ/LeUS6QXa3JtaV1cXXXEFykr1HcUArI826tZiCnXU9Yxos1SqXbVyFmUJZ5PmxrwPhh8uGJwrZBFnVgOrnp6eqOJY750kiubu2jzPra+vL0KdIGFTCLO2thbeQ1ONVNctLy9HvCNQIvhkvb294V7lhYWFUDgAmZ6UEuejv7/fBgcHQ9EAwZW2LSHoOHv2rD333HN2+vTpUKi1uLgY9em699577Z577glIIWkpdM9zzz1nzz77rD3//PMBYdDgo7+/3+6++267++67A8o0ODgYHP2VlRU7e/ZsSDE///zz9sILL4RWVCsrKyGQJm1777332vHjxwO6BpVidHTUTp8+bU8//bQ988wzwdmf3bkNpqWlxfr7++2+++4L34HjT7ud5eXlgAyy1uwXSKMGZXfffbfdc889Njg4GPQRnC7S3c8++6w999xzUUU9+rm/v9/uueeeMB/sSJ7nwbk6c+ZMmI/eoAHFp6enJzhDWixCAdrW1lYI7i5cuBDei44QCwsLIUVL4QRIJefUzMI5v3jxYpQepVoUvYrDSNCJ08edxVy3lbq9g4CKIqnu7u6o4EevZwP5BimjLQnIvt6LDt1Br+qjCDLP86izgL4TAAGZOpBFvZ2FXnvod70JS28Tosr4wIEDIRuAfe7o6AhFR/TiRb+jl2d3ri/95je/+aI5eHeCg/c/mdlb8jz/6Z3//gdm9kN5nr8v9fv33HNP/qlPfSpcz4MzByLEtTw4UxxQvY6GSL6pqSnwOiYnJ4OBII9O7ycQKo3AaGhMs8vV1dUozaXtBZS7hQCDloCYwDeAa8fB+uxnP2sbGxs2ODgYUkkYT1J4R44cCU6PltIrwjk5ORkEm6pdIjCKE3ASsiyLIlTWFv7E3NxcOJRKEtd2BmYWuJCkgeFIQgA2u2Z8NSVC9NTX1xccS9Ba7ipkjXG+19bWojSwRl2grzQznpmZia4F4oCCRNIcGVSip6cnpAFx9LleiAhwdHTUnn766YDWVFVVRY2VQUjpY0YqRZEE9huHHCQK/hP7RA+m+vr6cIUUvcsuXboU0scLCwuhOIPUlUbHcIJARvQqKnpIamUk6BqyglPDPaYYby2uoeUCst3Q0BA1NWavtXJZU9js89TUVCBlw/9RIrteOWhmAcFUXi2IPE4EZwDHQQs5cGhWVlaiyli9WpAz7RsVY1CQbV/UwPpoL0GtImafteKU65G4pQfZ04p8gju+4+jRo6H1SVtbWwhSQPVBZfS+T/ZZC3n0hhD2GXK6vw5ta2srVKfrlWo4+FwMX1VVFaEyqjMViWU/KDxD/sl2wH3z8s8+U3Hc1NQUoZ6KfIHsYEP4DhB4HO7GxsZdXNL+/v7I2GuhnxbWsM+0rdI1OXToUNClZhZABqXiaKq9ubk52DTeiTZBtJYiMFXHjL6TNO+mz6QWNYA0Uziwuroa5J99vnr1ariP2MwCf1gbN3OLCN0ksIWqu7V4CVuK7OKwkpaGnzg9PR10FGnZ+fn5wDGkVQ/rwj63tbUF/jEcPN4J/4ErB6urq8M+Y9NocQTVhlZEvmCPbgM0S/7Wt75lExMT+97Be7uZvdk5eK/L8/wfy+88bGYP7/zn/Wb29Ms+0b/8o9PMJm/3JP6SjXJNdo9yTdKjXJfdo1yT9CjXZfco12T3OJXnedONf6143AlVtENmdkj++6CZDesv5Hn+iJk9YmaWZdmTeZ6/5uWb3g/GKNdl9yjXZPco1yQ9ynXZPco1SY9yXXaPck12jyzLnnyx31HxUkzkNo9vm9mJLMuOZVlWY2bvNLMv3uY5laMc5ShHOcpRjnLctvEDj+Dleb6ZZdn7zOwP7VqblEfzPH/mNk+rHOUoRznKUY5ylOO2jR94B8/MLM/zr5jZV27y1x/5i5zLD/Ao12X3KNdk9yjXJD3Kddk9yjVJj3Jddo9yTXaPF70mP/BFFuUoRznKUY5ylKMc5YjHncDBK0c5ylGOcpSjHOUoh4x95eBlWfaWLMteyLLsbJZl//x2z+d2jCzLDmVZ9v9lWfZclmXPZFn2v+/8/ANZll3Nsux7O58fu91zfblHlmUXsyz77zvv/+TOz9qzLPtalmVndv5su93zfLlGlmWnRB6+l2XZfJZl/2S/yUqWZY9mWTaeZdnT8rNCuciy7P07OuaFLMvefHtm/Rc/CtblV7Isez7Lsu9nWfb5LMtad35+NMuyFZGZ37htE/8LHAVrUnhe9rms/J6sycUsy7638/P9IitFtvgl0y37JkWb3eKVZnfqyLKsz8z68jz/TpZlTWb2lJn9XTN7h5kt5nn+ods5v9s5siy7aGavyfN8Un72y2Y2nef5B3eCgrY8z//Z7Zrj7Ro75+eqmf2Qmf0vto9kJcuyv2Fmi2b223me37/zs6RcZFl2r5l9ysxeZ2b9Zvb/mtnJPM+3btP0/8JGwbq8ycz+ZKf47ZfMzHbW5aiZfYnfu1NHwZp8wBLnZb/Livv//9bM5vI8/4V9JCtFtvgf2kukW/YTgvc6Mzub5/n5PM/XzezTZvbQbZ7Tyz7yPB/J8/w7O39fMLPnzGzg9s7qL/V4yMx+a+fvv2XXDuB+HD9qZufyPL90uyfyco88z79uZtPux0Vy8ZCZfTrP87U8zy+Y2Vm7pnvuuJFalzzP/yjP882d//yvdq0v6b4ZBbJSNPa1rDCyLMvsGsDwqZd1Urd57GGLXzLdsp8cvAEzuyL/PWT73LHZiZT+ipl9a+dH79tJrTy6n1KRMnIz+6Msy57Krt1+YmbWk+f5iNm1A2lm3bdtdrd3vNNiBbzfZaVILko9c32828z+QP77WJZl382y7Iksy/767ZrUbRqp81LKyrXx181sLM/zM/KzfSUrzha/ZLplPzl4qTvd9kd+OjGyLGs0s8fM7J/keT5vZr9uZoNm9kozGzGzf3v7Znfbxl/L8/xVZva3zOxndtIK+35k1xqI/x0z++zOj0pZKR6lnjGzLMv+TzPbNLP/tPOjETM7nOf5XzGzf2pmv5tlWfPtmt/LPIrOSykr18ZPWhw87itZSdjiwl9N/GxPedlPDt4NrzTbLyPLsmq7JlD/Kc/zx83M8jwfy/N8K8/zbTP7f+wOTRXsNfI8H975c9zMPm/X1mBshysBZ2L89s3wto2/ZWbfyfN8zKyUlZ1RJBf7Xs9kWfYuM/vbZvY/5zsk75200tTO358ys3NmdvL2zfLlG3ucl1JWsqzKzH7czH6Pn+0nWUnZYnsJdct+cvDKK80s8B0+YWbP5Xn+7+TnffJrbzOzp/2/vZNHlmUNO0RXy7KswczeZNfW4Itm9q6dX3uXmX3h9szwto4owt7vsrIziuTii2b2zizLarMsO2ZmJ8zsv92G+d2WkWXZW8zsn5nZ38nzfFl+3rVTqGNZlh23a+ty/vbM8uUde5yXfS0rO+N/NLPn8zwf4gf7RVaKbLG9hLrljrjJ4mZGeaVZGH/NzP6Bmf13ytLN7OfN7CezLHulXYN8L5rZe2/H5G7j6DGzz187c1ZlZr+b5/lXsyz7tpl9Jsuy95jZZTN7+22c48s+siw7YNcqz1Uefnk/yUqWZZ8ysx82s84sy4bM7P82sw9aQi7yPH8my7LPmNmzdi1F+TN3YlWkWeG6vN/Mas3saztn6b/mef6PzOxvmNkvZFm2aWZbZvaP8jy/2WKEH5hRsCY/nDov+11W8jz/hO3m9prtE1mxYlv8kumWfdMmpRzlKEc5ylGOcpRjv4z9lKItRznKUY5ylKMc5dgXo3TwylGOcpSjHOUoRznusFE6eOUoRznKUY5ylKMcd9goHbxylKMc5ShHOcpRjjtslA5eOcpRjnKUoxzlKMcdNkoHrxzlKEc5ylGOcpTjDhulg1eOcpSjHOUoRznKcYeN0sErRznKUY4/x8iy7L9lWfaZLMt+Icuyc1mWre5cKP+jt3tu5ShHOcpRNjouRznKUY5bHDt3aC6Y2baZfcvMftWu3ZDzb8xswMwG8zyfvG0TLEc5yrHvx765qqwc5ShHOV7Cca+Z1ZnZ183sjVwZlGXZtJn9qZn9dTP7/G2bXTnKUY59P8oUbTnKUY5y3Pp49c6fP+/ug3x+58+Ol3k+5ShHOcoRjdLBK0c5ylGOWx+vMrPhPM//zP28f+fPoZd5PuUoRznKEY3SwStHOcpRjlsfrzKzq4mf/4SZLZvZN17e6ZSjHOUoRzxKDl45ylGOctzCyLKswsxeYWZLWZZV5Xm+ufPzfjP738zs1/I8X7qdcyxHOcpRjrKKthzlKEc5bmFkWXavmT1jZlfsWpHFJ83soJn9X2Y2ZWZ/I8/z1ds3w3KUoxzlKFO05ShHOcpxq+NVO3/+mJm1mtnvm9kvm9lXzOxHS+euHOUox1+GUaZoy1GOcpTj1sarzWwoz/Onzexv3+7JlKMc5ShHapQIXjnKUY5y3Np4lZk9dbsnUY5ylKMce43SwStHOcpRjpscWZZlZvZKKx28cpSjHH/JR1lkUY5ylKMc5ShHOcpxh40SwStHOcpRjnKUoxzluMNG6eCVoxzlKEc5ylGOctxho3TwylGOcpSjHOUoRznusFE6eOUoRznKUY5ylKMcd9goHbxylKMc5ShHOcpRjjtslA5eOcpRjnKUoxzlKMcdNkoHrxzlKEc5ylGOcpTjDhulg1eOcpSjHOUoRznKcYeN/x9nCNXqAA12hAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "