Add outputs for threshold_90_precision and fix comment, fixes #2

main
Aurélien Geron 2019-04-05 17:06:37 +08:00
parent 6974508cf7
commit 687fd71b5f
1 changed files with 36 additions and 43 deletions

View File

@ -346,13 +346,6 @@
"execution_count": 23, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [ "source": [
"y_train_perfect_predictions = y_train_5 # pretend we reached perfection\n", "y_train_perfect_predictions = y_train_5 # pretend we reached perfection\n",
"confusion_matrix(y_train_5, y_train_perfect_predictions)" "confusion_matrix(y_train_5, y_train_perfect_predictions)"
@ -360,7 +353,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 25, "execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -371,7 +364,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 26, "execution_count": 25,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -380,7 +373,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 27, "execution_count": 26,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -389,7 +382,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 28, "execution_count": 27,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -398,7 +391,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 29, "execution_count": 28,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -409,7 +402,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 29,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -418,7 +411,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 31, "execution_count": 30,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -428,7 +421,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 32, "execution_count": 31,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -438,7 +431,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 33, "execution_count": 32,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -447,7 +440,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 34, "execution_count": 33,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -458,7 +451,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 35, "execution_count": 34,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -468,7 +461,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 36, "execution_count": 35,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -479,7 +472,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 37, "execution_count": 36,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -504,7 +497,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 38, "execution_count": 37,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -513,7 +506,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 42, "execution_count": 38,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -533,31 +526,13 @@
"plt.show()" "plt.show()"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)] # == 7813"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"threshold_90_precision"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 39, "execution_count": 39,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"y_train_pred_90 = (y_scores >= threshold_90_precision)" "threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)]"
] ]
}, },
{ {
@ -566,7 +541,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"precision_score(y_train_5, y_train_pred_90)" "threshold_90_precision"
] ]
}, },
{ {
@ -574,6 +549,24 @@
"execution_count": 41, "execution_count": 41,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [
"y_train_pred_90 = (y_scores >= threshold_90_precision)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"precision_score(y_train_5, y_train_pred_90)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [ "source": [
"recall_score(y_train_5, y_train_pred_90)" "recall_score(y_train_5, y_train_pred_90)"
] ]
@ -587,7 +580,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 43, "execution_count": 44,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [