Use np.random.set_seed(42) and tf.set_random_seed(42) to make notebook's output constant, and simplify code in notebook 15
parent
045150bd95
commit
74794da1de
|
@ -55,11 +55,13 @@
|
|||
"\n",
|
||||
"# Common imports\n",
|
||||
"import numpy as np\n",
|
||||
"import numpy.random as rnd\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# to make this notebook's output stable across runs\n",
|
||||
"rnd.seed(42)\n",
|
||||
"def reset_graph(seed=42):\n",
|
||||
" tf.reset_default_graph()\n",
|
||||
" tf.set_random_seed(seed)\n",
|
||||
" np.random.seed(seed)\n",
|
||||
"\n",
|
||||
"# To plot pretty figures\n",
|
||||
"%matplotlib inline\n",
|
||||
|
@ -201,7 +203,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"with tf.device(\"/job:ps\"):\n",
|
||||
" a = tf.Variable(1.0, name=\"a\")\n",
|
||||
|
@ -238,7 +240,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"with tf.device(tf.train.replica_device_setter(\n",
|
||||
" ps_tasks=2,\n",
|
||||
|
@ -280,7 +282,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"test_csv = open(\"my_test.csv\", \"w\")\n",
|
||||
"test_csv.write(\"x1, x2 , target\\n\")\n",
|
||||
|
@ -362,7 +364,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])\n",
|
||||
"filename = tf.placeholder(tf.string)\n",
|
||||
|
@ -409,7 +411,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"def read_and_push_instance(filename_queue, instance_queue):\n",
|
||||
" reader = tf.TextLineReader(skip_header_lines=1)\n",
|
||||
|
@ -467,7 +469,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"q = tf.FIFOQueue(capacity=10, dtypes=[tf.float32], shapes=[()])\n",
|
||||
"v = tf.placeholder(tf.float32)\n",
|
||||
|
@ -515,7 +517,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
|
|
@ -55,11 +55,13 @@
|
|||
"\n",
|
||||
"# Common imports\n",
|
||||
"import numpy as np\n",
|
||||
"import numpy.random as rnd\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# to make this notebook's output stable across runs\n",
|
||||
"rnd.seed(42)\n",
|
||||
"def reset_graph(seed=42):\n",
|
||||
" tf.reset_default_graph()\n",
|
||||
" tf.set_random_seed(seed)\n",
|
||||
" np.random.seed(seed)\n",
|
||||
"\n",
|
||||
"# To plot pretty figures\n",
|
||||
"%matplotlib inline\n",
|
||||
|
@ -134,7 +136,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_inputs = 3\n",
|
||||
"n_neurons = 5\n",
|
||||
|
@ -205,7 +207,7 @@
|
|||
"editable": true
|
||||
},
|
||||
"source": [
|
||||
"## Using `rnn()`"
|
||||
"## Using `static_rnn()`"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -218,8 +220,6 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"n_inputs = 3\n",
|
||||
"n_neurons = 5"
|
||||
]
|
||||
|
@ -234,6 +234,8 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"X0 = tf.placeholder(tf.float32, [None, n_inputs])\n",
|
||||
"X1 = tf.placeholder(tf.float32, [None, n_inputs])\n",
|
||||
"\n",
|
||||
|
@ -381,8 +383,6 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 2\n",
|
||||
"n_inputs = 3\n",
|
||||
"n_neurons = 5"
|
||||
|
@ -398,6 +398,8 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
|
||||
"X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))\n",
|
||||
"\n",
|
||||
|
@ -446,6 +448,17 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(outputs_val)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -468,7 +481,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 21,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -476,8 +489,6 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 2\n",
|
||||
"n_inputs = 3\n",
|
||||
"n_neurons = 5"
|
||||
|
@ -485,7 +496,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 22,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -493,6 +504,8 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
|
||||
"\n",
|
||||
"basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)\n",
|
||||
|
@ -501,7 +514,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -514,7 +527,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"execution_count": 24,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -531,12 +544,23 @@
|
|||
"\n",
|
||||
"with tf.Session() as sess:\n",
|
||||
" init.run()\n",
|
||||
" print(\"outputs =\", outputs.eval(feed_dict={X: X_batch}))"
|
||||
" outputs_val = outputs.eval(feed_dict={X: X_batch})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"execution_count": 25,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(outputs_val)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -559,7 +583,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"execution_count": 27,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -567,19 +591,19 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 2\n",
|
||||
"n_inputs = 3\n",
|
||||
"n_neurons = 5\n",
|
||||
"\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])\n",
|
||||
"basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"execution_count": 28,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -594,7 +618,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"execution_count": 29,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -607,7 +631,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"execution_count": 30,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -627,7 +651,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"execution_count": 31,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -643,7 +667,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"execution_count": 32,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -656,7 +680,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"execution_count": 33,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -691,7 +715,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"execution_count": 34,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -699,7 +723,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 28\n",
|
||||
"n_inputs = 28\n",
|
||||
|
@ -728,7 +752,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"execution_count": 35,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -744,7 +768,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"execution_count": 36,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -779,7 +803,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"execution_count": 37,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -787,7 +811,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 28\n",
|
||||
"n_inputs = 28\n",
|
||||
|
@ -801,7 +825,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"execution_count": 38,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -821,7 +845,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"execution_count": 39,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -843,7 +867,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"execution_count": 40,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -878,7 +902,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"execution_count": 41,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -901,7 +925,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"execution_count": 42,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -938,7 +962,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"execution_count": 43,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -951,7 +975,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"execution_count": 44,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -984,7 +1008,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"execution_count": 45,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -992,7 +1016,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 20\n",
|
||||
"n_inputs = 1\n",
|
||||
|
@ -1018,7 +1042,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"execution_count": 46,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1026,7 +1050,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 20\n",
|
||||
"n_inputs = 1\n",
|
||||
|
@ -1039,7 +1063,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"execution_count": 47,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1054,7 +1078,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"execution_count": 48,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1067,7 +1091,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"execution_count": 49,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1086,7 +1110,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"execution_count": 50,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1099,7 +1123,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"execution_count": 51,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1124,7 +1148,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"execution_count": 52,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1141,7 +1165,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"execution_count": 53,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1154,7 +1178,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"execution_count": 54,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1185,7 +1209,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"execution_count": 55,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1193,7 +1217,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 20\n",
|
||||
"n_inputs = 1\n",
|
||||
|
@ -1205,7 +1229,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"execution_count": 56,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1219,7 +1243,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"execution_count": 57,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1233,7 +1257,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"execution_count": 58,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1248,7 +1272,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"execution_count": 59,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1266,7 +1290,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"execution_count": 60,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1294,7 +1318,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"execution_count": 61,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1307,7 +1331,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 60,
|
||||
"execution_count": 62,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1337,7 +1361,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 61,
|
||||
"execution_count": 63,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1357,7 +1381,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"execution_count": 64,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1375,7 +1399,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"execution_count": 65,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1435,7 +1459,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"execution_count": 66,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1443,7 +1467,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_inputs = 2\n",
|
||||
"n_steps = 5\n",
|
||||
|
@ -1453,7 +1477,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 65,
|
||||
"execution_count": 67,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1472,7 +1496,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 66,
|
||||
"execution_count": 68,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1485,7 +1509,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 67,
|
||||
"execution_count": 69,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1498,7 +1522,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 68,
|
||||
"execution_count": 70,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1513,7 +1537,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 69,
|
||||
"execution_count": 71,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1546,7 +1570,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 70,
|
||||
"execution_count": 72,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1573,7 +1597,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 71,
|
||||
"execution_count": 73,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1603,7 +1627,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 72,
|
||||
"execution_count": 74,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1611,7 +1635,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_inputs = 5\n",
|
||||
"n_steps = 20\n",
|
||||
|
@ -1622,7 +1646,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 73,
|
||||
"execution_count": 75,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1639,7 +1663,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 74,
|
||||
"execution_count": 76,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1652,7 +1676,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 75,
|
||||
"execution_count": 77,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1678,7 +1702,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 76,
|
||||
"execution_count": 78,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1686,7 +1710,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_inputs = 1\n",
|
||||
"n_neurons = 100\n",
|
||||
|
@ -1700,7 +1724,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 77,
|
||||
"execution_count": 79,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1720,7 +1744,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 78,
|
||||
"execution_count": 80,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1754,7 +1778,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 79,
|
||||
"execution_count": 81,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1788,7 +1812,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 80,
|
||||
"execution_count": 82,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1796,7 +1820,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_inputs = 1\n",
|
||||
"n_neurons = 100\n",
|
||||
|
@ -1828,7 +1852,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 81,
|
||||
"execution_count": 83,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1874,7 +1898,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 82,
|
||||
"execution_count": 84,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1882,7 +1906,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"import sys\n",
|
||||
"training = True # in a script, this would be (sys.argv[-1] == \"train\") instead\n",
|
||||
|
@ -1934,7 +1958,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 83,
|
||||
"execution_count": 85,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1942,12 +1966,14 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 84,
|
||||
"execution_count": 86,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -1955,8 +1981,6 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 28\n",
|
||||
"n_inputs = 28\n",
|
||||
"n_neurons = 150\n",
|
||||
|
@ -1986,7 +2010,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 85,
|
||||
"execution_count": 87,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -1999,7 +2023,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 86,
|
||||
"execution_count": 88,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2012,7 +2036,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 87,
|
||||
"execution_count": 89,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2038,7 +2062,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 88,
|
||||
"execution_count": 90,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2051,7 +2075,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 89,
|
||||
"execution_count": 91,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2094,7 +2118,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 90,
|
||||
"execution_count": 92,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2137,7 +2161,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 91,
|
||||
"execution_count": 93,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2150,7 +2174,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 92,
|
||||
"execution_count": 94,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2173,7 +2197,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 93,
|
||||
"execution_count": 95,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2193,7 +2217,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 94,
|
||||
"execution_count": 96,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2206,7 +2230,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 95,
|
||||
"execution_count": 97,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2219,7 +2243,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 96,
|
||||
"execution_count": 98,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2242,7 +2266,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 97,
|
||||
"execution_count": 99,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2280,7 +2304,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 98,
|
||||
"execution_count": 100,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2294,7 +2318,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 99,
|
||||
"execution_count": 101,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2307,7 +2331,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 100,
|
||||
"execution_count": 102,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2330,7 +2354,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 101,
|
||||
"execution_count": 103,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2356,7 +2380,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 102,
|
||||
"execution_count": 104,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2364,7 +2388,7 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"# Input data.\n",
|
||||
"train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])\n",
|
||||
|
@ -2373,7 +2397,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 103,
|
||||
"execution_count": 105,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2391,7 +2415,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 104,
|
||||
"execution_count": 106,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2405,7 +2429,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 105,
|
||||
"execution_count": 107,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2452,7 +2476,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 106,
|
||||
"execution_count": 108,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2511,7 +2535,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 107,
|
||||
"execution_count": 109,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2534,7 +2558,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 108,
|
||||
"execution_count": 110,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
|
@ -2558,7 +2582,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 109,
|
||||
"execution_count": 111,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2597,7 +2621,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 111,
|
||||
"execution_count": 112,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
@ -2606,7 +2630,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"tf.reset_default_graph()\n",
|
||||
"reset_graph()\n",
|
||||
"\n",
|
||||
"n_steps = 50\n",
|
||||
"n_neurons = 200\n",
|
||||
|
@ -2642,7 +2666,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 112,
|
||||
"execution_count": 113,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue