Update libraries to latest version, including TensorFlow 2.4.1 and Scikit-Learn 0.24.1
parent
0ba6b3b5c8
commit
749817ccfa
|
@ -639,7 +639,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 26,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -1316,7 +1316,7 @@
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"We will also need a replay memory. It will contain the agent's experiences, in the form of tuples: `(obs, action, reward, next_obs, done)`. We can use the `deque` class for that:"
|
"We will also need a replay memory. It will contain the agent's experiences, in the form of tuples: `(obs, action, reward, next_obs, done)`. We can use the `deque` class for that (but make sure to check out DeepMind's excellent [Reverb library](https://github.com/deepmind/reverb) for a much more robust implementation of experience replay):"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1860,20 +1860,13 @@
|
||||||
"env.reset()"
|
"env.reset()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"**Warning**: since TF Agents 0.4.0, there seems to be an issue with passing an integer to the `env.step()` method (it raises an `AttributeError`). You need to wrap it in a NumPy array, as done below. Please see [TF Agents Issue #520](https://github.com/tensorflow/agents/issues/520) for more details."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 82,
|
"execution_count": 82,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"env.step(np.array(1)) # Fire"
|
"env.step(1) # Fire"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2081,9 +2074,9 @@
|
||||||
"source": [
|
"source": [
|
||||||
"env.seed(42)\n",
|
"env.seed(42)\n",
|
||||||
"env.reset()\n",
|
"env.reset()\n",
|
||||||
"time_step = env.step(np.array(1)) # FIRE\n",
|
"time_step = env.step(1) # FIRE\n",
|
||||||
"for _ in range(4):\n",
|
"for _ in range(4):\n",
|
||||||
" time_step = env.step(np.array(3)) # LEFT"
|
" time_step = env.step(3) # LEFT"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2194,13 +2187,9 @@
|
||||||
"source": [
|
"source": [
|
||||||
"from tf_agents.agents.dqn.dqn_agent import DqnAgent\n",
|
"from tf_agents.agents.dqn.dqn_agent import DqnAgent\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# see TF-agents issue #113\n",
|
|
||||||
"#optimizer = keras.optimizers.RMSprop(lr=2.5e-4, rho=0.95, momentum=0.0,\n",
|
|
||||||
"# epsilon=0.00001, centered=True)\n",
|
|
||||||
"\n",
|
|
||||||
"train_step = tf.Variable(0)\n",
|
"train_step = tf.Variable(0)\n",
|
||||||
"update_period = 4 # run a training step every 4 collect steps\n",
|
"update_period = 4 # run a training step every 4 collect steps\n",
|
||||||
"optimizer = tf.compat.v1.train.RMSPropOptimizer(learning_rate=2.5e-4, decay=0.95, momentum=0.0,\n",
|
"optimizer = keras.optimizers.RMSprop(lr=2.5e-4, rho=0.95, momentum=0.0,\n",
|
||||||
" epsilon=0.00001, centered=True)\n",
|
" epsilon=0.00001, centered=True)\n",
|
||||||
"epsilon_fn = keras.optimizers.schedules.PolynomialDecay(\n",
|
"epsilon_fn = keras.optimizers.schedules.PolynomialDecay(\n",
|
||||||
" initial_learning_rate=1.0, # initial ε\n",
|
" initial_learning_rate=1.0, # initial ε\n",
|
||||||
|
@ -2222,7 +2211,7 @@
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"Create the replay buffer (this may use a lot of RAM, so please reduce the buffer size if you get an out-of-memory error):"
|
"Create the replay buffer (this will use a lot of RAM, so please reduce the buffer size if you get an out-of-memory error):"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2236,7 +2225,7 @@
|
||||||
"replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(\n",
|
"replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(\n",
|
||||||
" data_spec=agent.collect_data_spec,\n",
|
" data_spec=agent.collect_data_spec,\n",
|
||||||
" batch_size=tf_env.batch_size,\n",
|
" batch_size=tf_env.batch_size,\n",
|
||||||
" max_length=1000000)\n",
|
" max_length=1000000) # reduce if OOM error\n",
|
||||||
"\n",
|
"\n",
|
||||||
"replay_buffer_observer = replay_buffer.add_batch"
|
"replay_buffer_observer = replay_buffer.add_batch"
|
||||||
]
|
]
|
||||||
|
@ -2363,16 +2352,28 @@
|
||||||
"Let's sample 2 sub-episodes, with 3 time steps each and display them:"
|
"Let's sample 2 sub-episodes, with 3 time steps each and display them:"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Note**: `replay_buffer.get_next()` is deprecated. We must use `replay_buffer.as_dataset(..., single_deterministic_pass=False)` instead."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 109,
|
"execution_count": 109,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"tf.random.set_seed(888) # chosen to show an example of trajectory at the end of an episode\n",
|
"tf.random.set_seed(93) # chosen to show an example of trajectory at the end of an episode\n",
|
||||||
"\n",
|
"\n",
|
||||||
"trajectories, buffer_info = replay_buffer.get_next(\n",
|
"#trajectories, buffer_info = replay_buffer.get_next(\n",
|
||||||
" sample_batch_size=2, num_steps=3)"
|
"# sample_batch_size=2, num_steps=3)\n",
|
||||||
|
"\n",
|
||||||
|
"trajectories, buffer_info = next(iter(replay_buffer.as_dataset(\n",
|
||||||
|
" sample_batch_size=2,\n",
|
||||||
|
" num_steps=3,\n",
|
||||||
|
" single_deterministic_pass=False)))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2528,7 +2529,7 @@
|
||||||
" lives = tf_env.pyenv.envs[0].ale.lives()\n",
|
" lives = tf_env.pyenv.envs[0].ale.lives()\n",
|
||||||
" if prev_lives != lives:\n",
|
" if prev_lives != lives:\n",
|
||||||
" tf_env.reset()\n",
|
" tf_env.reset()\n",
|
||||||
" tf_env.pyenv.envs[0].step(np.array(1))\n",
|
" tf_env.pyenv.envs[0].step(1)\n",
|
||||||
" prev_lives = lives\n",
|
" prev_lives = lives\n",
|
||||||
"\n",
|
"\n",
|
||||||
"watch_driver = DynamicStepDriver(\n",
|
"watch_driver = DynamicStepDriver(\n",
|
||||||
|
@ -2797,7 +2798,7 @@
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.7.8"
|
"version": "3.7.9"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
Loading…
Reference in New Issue