From 77da622124259c6d92a2233c4b3a14a9a4096010 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Aur=C3=A9lien=20Geron?= Date: Wed, 10 Nov 2021 17:58:42 +1300 Subject: [PATCH] Sync notebook 04 with book code --- 04_training_linear_models.ipynb | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) diff --git a/04_training_linear_models.ipynb b/04_training_linear_models.ipynb index 72add07..1b1ed32 100644 --- a/04_training_linear_models.ipynb +++ b/04_training_linear_models.ipynb @@ -205,6 +205,8 @@ "metadata": {}, "outputs": [], "source": [ + "import matplotlib.pyplot as plt\n", + "\n", "plt.figure(figsize=(6, 4)) # not in the book\n", "plt.plot(X_new, y_predict, \"r-\", label=\"Predictions\")\n", "plt.plot(X, y, \"b.\")\n", @@ -1052,14 +1054,14 @@ "metadata": {}, "outputs": [], "source": [ + "# not in the book\n", + "\n", "np.random.seed(42)\n", "m = 100\n", "X = 6 * np.random.rand(m, 1) - 3\n", "y = 0.5 * X ** 2 + X + 2 + np.random.randn(m, 1)\n", - "# X_train, X_val, y_train, y_val = train_test_split(\n", - "# X[:50], y[:50].ravel(), test_size=0.5, random_state=10)\n", - "X_train, y_train = X[:50], y[:50, 0]\n", - "X_valid, y_valid = X[50:], y[50:, 0]" + "X_train, y_train = X[: m // 2], y[: m // 2, 0]\n", + "X_valid, y_valid = X[m // 2 :], y[m // 2 :, 0]" ] }, { @@ -1070,6 +1072,7 @@ "source": [ "from copy import deepcopy\n", "from sklearn.metrics import mean_squared_error\n", + "from sklearn.preprocessing import StandardScaler\n", "\n", "preprocessing = make_pipeline(PolynomialFeatures(degree=90, include_bias=False),\n", " StandardScaler())\n", @@ -1192,7 +1195,7 @@ "metadata": {}, "outputs": [], "source": [ - "print(iris.data.head())" + "iris.data.head(3)" ] }, { @@ -1201,7 +1204,7 @@ "metadata": {}, "outputs": [], "source": [ - "iris.target.head() # note that the instances are not shuffled" + "iris.target.head(3) # note that the instances are not shuffled" ] }, {