Fix bug: tf.add_n([loss] + reg_losses) rather than loss + reg_losses
parent
fe552bbbed
commit
7997d4d38c
|
@ -504,7 +504,7 @@
|
||||||
" xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n",
|
" xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n",
|
||||||
" reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
|
" reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
|
||||||
" base_loss = tf.reduce_mean(xentropy, name=\"base_loss\")\n",
|
" base_loss = tf.reduce_mean(xentropy, name=\"base_loss\")\n",
|
||||||
" loss = tf.add(base_loss, reg_losses, name=\"loss\")\n",
|
" loss = tf.add_n([base_loss] + reg_losses, name=\"loss\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"with tf.name_scope(\"train\"):\n",
|
"with tf.name_scope(\"train\"):\n",
|
||||||
" optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)\n",
|
" optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)\n",
|
||||||
|
@ -749,6 +749,7 @@
|
||||||
" for iteration in range(len(mnist.test.labels)//batch_size):\n",
|
" for iteration in range(len(mnist.test.labels)//batch_size):\n",
|
||||||
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
|
" X_batch, y_batch = mnist.train.next_batch(batch_size)\n",
|
||||||
" sess.run(training_op, feed_dict={is_training: True, X: X_batch, y: y_batch})\n",
|
" sess.run(training_op, feed_dict={is_training: True, X: X_batch, y: y_batch})\n",
|
||||||
|
" sess.run(clip_all_weights)\n",
|
||||||
" acc_train = accuracy.eval(feed_dict={is_training: False, X: X_batch, y: y_batch})\n",
|
" acc_train = accuracy.eval(feed_dict={is_training: False, X: X_batch, y: y_batch})\n",
|
||||||
" acc_test = accuracy.eval(feed_dict={is_training: False, X: mnist.test.images, y: mnist.test.labels})\n",
|
" acc_test = accuracy.eval(feed_dict={is_training: False, X: mnist.test.images, y: mnist.test.labels})\n",
|
||||||
" print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)\n",
|
" print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)\n",
|
||||||
|
|
|
@ -393,7 +393,7 @@
|
||||||
"mse = tf.reduce_mean(tf.square(outputs - X))\n",
|
"mse = tf.reduce_mean(tf.square(outputs - X))\n",
|
||||||
"\n",
|
"\n",
|
||||||
"reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
|
"reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
|
||||||
"loss = mse + reg_losses\n",
|
"loss = tf.add_n([mse] + reg_losses)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
|
"optimizer = tf.train.AdamOptimizer(learning_rate)\n",
|
||||||
"training_op = optimizer.minimize(loss)\n",
|
"training_op = optimizer.minimize(loss)\n",
|
||||||
|
@ -545,7 +545,7 @@
|
||||||
" mse = tf.reduce_mean(tf.square(outputs - X))\n",
|
" mse = tf.reduce_mean(tf.square(outputs - X))\n",
|
||||||
"\n",
|
"\n",
|
||||||
" reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
|
" reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)\n",
|
||||||
" loss = mse + reg_losses\n",
|
" loss = tf.add_n([mse] + reg_losses)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" optimizer = tf.train.AdamOptimizer(learning_rate)\n",
|
" optimizer = tf.train.AdamOptimizer(learning_rate)\n",
|
||||||
" training_op = optimizer.minimize(loss)\n",
|
" training_op = optimizer.minimize(loss)\n",
|
||||||
|
|
Loading…
Reference in New Issue