Update lib versions and add pydot, fixes #29
parent
de0f184265
commit
79ce441212
|
@ -36,7 +36,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Python 3.7 is required:"
|
||||
"This project requires Python 3.7 or above:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -50,6 +50,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"\n",
|
||||
"assert sys.version_info >= (3, 7)"
|
||||
]
|
||||
},
|
||||
|
@ -57,7 +58,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Make this notebook's output stable across runs:"
|
||||
"Scikit-Learn ≥1.0.1 is required:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -66,27 +67,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"np.random.seed(42)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Scikit-Learn ≥1.0 is required:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -98,7 +82,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -111,6 +95,24 @@
|
|||
"plt.rc('ytick', labelsize=10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Make this notebook's output stable across runs:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"np.random.seed(42)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
@ -1713,7 +1715,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"metadata": {
|
||||
"interpreter": {
|
||||
|
|
|
@ -76,9 +76,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -6257,7 +6258,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "279px",
|
||||
|
|
|
@ -66,9 +66,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2465,7 +2466,9 @@
|
|||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "0.9763"
|
||||
"text/plain": [
|
||||
"0.9763"
|
||||
]
|
||||
},
|
||||
"execution_count": 101,
|
||||
"metadata": {},
|
||||
|
@ -4581,7 +4584,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2785,7 +2786,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2593,7 +2594,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2019,7 +2020,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "309px",
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2058,7 +2059,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "252px",
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2565,7 +2566,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -6984,7 +6985,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -88,7 +89,7 @@
|
|||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -3781,7 +3782,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "264px",
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -4500,7 +4501,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "360px",
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -6474,7 +6475,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -68,9 +68,10 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -88,7 +89,7 @@
|
|||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -4213,7 +4214,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.12"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "264px",
|
||||
|
|
|
@ -83,9 +83,10 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -107,7 +108,7 @@
|
|||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2220,7 +2221,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
|
|
@ -77,9 +77,10 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -4810,7 +4811,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
|
|
@ -77,9 +77,10 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -4297,7 +4298,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
|
|
@ -77,9 +77,10 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import sklearn\n",
|
||||
"\n",
|
||||
"assert sklearn.__version__ >= \"1.0.1\""
|
||||
"assert version.parse(sklearn.__version__) >= version.parse(\"1.0.1\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -101,7 +102,7 @@
|
|||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -3280,7 +3281,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "381px",
|
||||
|
|
|
@ -77,9 +77,10 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2597,7 +2598,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -77,9 +77,10 @@
|
|||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from packaging import version\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"assert tf.__version__ >= \"2.8.0\""
|
||||
"assert version.parse(tf.__version__) >= version.parse(\"2.8.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -97,6 +98,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"if \"google.colab\" in sys.modules or \"kaggle_secrets\" in sys.modules:\n",
|
||||
" %pip install -q -U google-cloud-aiplatform"
|
||||
]
|
||||
|
@ -3162,7 +3164,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.10"
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -3,44 +3,45 @@ channels:
|
|||
- conda-forge
|
||||
- defaults
|
||||
dependencies:
|
||||
- box2d-py # used only in chapter 18, exercise 8
|
||||
- ftfy=5.5 # used only in chapter 16 by the transformers library
|
||||
- box2d-py=2.3 # used only in chapter 18, exercise 8
|
||||
- ftfy=6.1 # used only in chapter 16 by the transformers library
|
||||
- graphviz # used only in chapter 6 for dot files
|
||||
- python-graphviz # used only in chapter 6 for dot files
|
||||
- ipython=8.0 # a powerful Python shell
|
||||
- ipywidgets=7.6 # optionally used only in chapter 11 for tqdm in Jupyter
|
||||
- ipython=8.5 # a powerful Python shell
|
||||
- ipywidgets=8.0 # optionally used only in chapter 11 for tqdm in Jupyter
|
||||
- joblib=1.1 # used only in chapter 2 to save/load Scikit-Learn models
|
||||
- jupyterlab=3.2 # to edit and run Jupyter notebooks
|
||||
- jupyterlab=3.4 # to edit and run Jupyter notebooks
|
||||
- matplotlib=3.5 # beautiful plots. See tutorial tools_matplotlib.ipynb
|
||||
- nbdime=3.1 # optional tool to diff Jupyter notebooks
|
||||
- nltk=3.6 # optionally used in chapter 3, exercise 4
|
||||
- numexpr=2.8 # used only in the Pandas tutorial for numerical expressions
|
||||
- numpy=1.22 # Powerful n-dimensional arrays and numerical computing tools
|
||||
- numpy=1.23 # Powerful n-dimensional arrays and numerical computing tools
|
||||
- pandas=1.4 # data analysis and manipulation tool
|
||||
- pillow=9.0 # image manipulation library, (used by matplotlib.image.imread)
|
||||
- pillow=9.2 # image manipulation library, (used by matplotlib.image.imread)
|
||||
- pip # Python's package-management system
|
||||
- py-xgboost=1.5 # used only in chapter 6 for optimized Gradient Boosting
|
||||
- py-xgboost=1.6 # used only in chapter 6 for optimized Gradient Boosting
|
||||
- pydot=1.4 # used only for in chapter 10 for tf.keras.utils.plot_model()
|
||||
- pyglet=1.5 # used only in chapter 18 to render environments
|
||||
- pyopengl=3.1 # used only in chapter 18 to render environments
|
||||
- python=3.9 # Python! Not using latest version as some libs lack support
|
||||
#- pyvirtualdisplay=2.2 # used only in chapter 18 if on headless server
|
||||
- requests=2.27 # used only in chapter 19 for REST API queries
|
||||
- scikit-learn=1.0 # machine learning library
|
||||
- scipy=1.8 # scientific/technical computing library
|
||||
- tqdm=4.62 # a progress bar library
|
||||
- python=3.10 # your beloved programming language! :)
|
||||
#- pyvirtualdisplay=3.0 # used only in chapter 18 if on headless server
|
||||
- requests=2.28 # used only in chapter 19 for REST API queries
|
||||
- scikit-learn=1.1 # machine learning library
|
||||
- scipy=1.9 # scientific/technical computing library
|
||||
- tqdm=4.64 # a progress bar library
|
||||
- wheel # built-package format for pip
|
||||
- widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks
|
||||
- widgetsnbextension=4.0 # interactive HTML widgets for Jupyter notebooks
|
||||
- pip:
|
||||
- keras-tuner~=1.1.2 # used in chapters 10 and 19 for hyperparameter tuning
|
||||
- tensorboard-plugin-profile~=2.5.0 # profiling plugin for TensorBoard
|
||||
- tensorboard~=2.8.0 # TensorFlow's visualization toolkit
|
||||
- tensorflow-addons~=0.16.1 # used in chapters 11 & 16 (for AdamW & seq2seq)
|
||||
- tensorflow-datasets~=4.5.2 # datasets repository, ready to use
|
||||
- keras-tuner~=1.1.3 # used in chapters 10 and 19 for hyperparameter tuning
|
||||
- tensorboard-plugin-profile~=2.8.0 # profiling plugin for TensorBoard
|
||||
- tensorboard~=2.10.0 # TensorFlow's visualization toolkit
|
||||
- tensorflow-addons~=0.17.1 # used in chapters 11 & 16 (for AdamW & seq2seq)
|
||||
- tensorflow-datasets~=4.6.0 # datasets repository, ready to use
|
||||
- tensorflow-hub~=0.12.0 # trained ML models repository, ready to use
|
||||
- tensorflow-serving-api~=2.8.0 # or tensorflow-serving-api-gpu if gpu
|
||||
- tensorflow~=2.8.0 # Deep Learning library
|
||||
- transformers~=4.16.2 # Natural Language Processing lib for TF or PyTorch
|
||||
- urlextract~=1.5.0 # optionally used in chapter 3, exercise 4
|
||||
- tensorflow-serving-api~=2.10.0 # or tensorflow-serving-api-gpu if gpu
|
||||
- tensorflow~=2.10.0 # Deep Learning library
|
||||
- transformers~=4.21.3 # Natural Language Processing lib for TF or PyTorch
|
||||
- urlextract~=1.6.0 # optionally used in chapter 3, exercise 4
|
||||
- gym[atari,accept-rom-license]~=0.21.0 # used only in chapter 18
|
||||
- google-cloud-aiplatform~=1.12.0 # used only in chapter 19
|
||||
- google-cloud-storage~=2.2.1 # used only in chapter 19
|
||||
- google-cloud-aiplatform~=1.17.0 # used only in chapter 19
|
||||
- google-cloud-storage~=2.5.0 # used only in chapter 19
|
||||
|
|
|
@ -4,20 +4,20 @@
|
|||
|
||||
|
||||
##### Core scientific packages
|
||||
jupyterlab~=3.2.0
|
||||
matplotlib~=3.5.0
|
||||
numpy~=1.22.0
|
||||
pandas~=1.4.0
|
||||
scipy~=1.8.0
|
||||
jupyterlab~=3.4.6
|
||||
matplotlib~=3.5.3
|
||||
numpy~=1.23.3
|
||||
pandas~=1.4.4
|
||||
scipy~=1.9.1
|
||||
|
||||
##### Machine Learning packages
|
||||
scikit-learn~=1.0.2
|
||||
scikit-learn~=1.1.2
|
||||
|
||||
# Optional: the XGBoost library is only used in chapter 7
|
||||
xgboost~=1.5.0
|
||||
xgboost~=1.6.2
|
||||
|
||||
# Optional: the transformers library is only used in chapter 16
|
||||
transformers~=4.16.2
|
||||
transformers~=4.21.3
|
||||
|
||||
##### TensorFlow-related packages
|
||||
|
||||
|
@ -27,20 +27,20 @@ transformers~=4.16.2
|
|||
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
|
||||
# installation instructions.
|
||||
|
||||
tensorflow~=2.8.0
|
||||
tensorflow~=2.10.0
|
||||
# Optional: the TF Serving API library is just needed for chapter 18.
|
||||
tensorflow-serving-api~=2.8.0 # or tensorflow-serving-api-gpu if gpu
|
||||
tensorflow-serving-api~=2.10.0 # or tensorflow-serving-api-gpu if gpu
|
||||
|
||||
tensorboard~=2.8.0
|
||||
tensorboard-plugin-profile~=2.5.0
|
||||
tensorflow-datasets~=4.5.2
|
||||
tensorboard~=2.10.0
|
||||
tensorboard-plugin-profile~=2.8.0
|
||||
tensorflow-datasets~=4.6.0
|
||||
tensorflow-hub~=0.12.0
|
||||
|
||||
# Used in chapter 10 and 19 for hyperparameter tuning
|
||||
keras-tuner~=1.1.2
|
||||
keras-tuner~=1.1.3
|
||||
|
||||
# Optional: used in chapters 11 & 16 (for AdamW & seq2seq)
|
||||
tensorflow-addons~=0.16.1
|
||||
tensorflow-addons~=0.17.1
|
||||
|
||||
##### Reinforcement Learning library (chapter 18)
|
||||
|
||||
|
@ -55,17 +55,17 @@ gym[Box2D,atari,accept-rom-license]~=0.21.0
|
|||
# It's much easier to use Anaconda instead.
|
||||
|
||||
##### Image manipulation
|
||||
Pillow~=9.0.0
|
||||
graphviz~=0.19.1
|
||||
pyglet~=1.5.21
|
||||
Pillow~=9.2.0
|
||||
graphviz~=0.20.1
|
||||
pyglet~=1.5.26
|
||||
|
||||
#pyvirtualdisplay # needed in chapter 18, if on a headless server
|
||||
# (i.e., without screen, e.g., Colab or VM)
|
||||
|
||||
|
||||
##### Google Cloud Platform - used only in chapter 19
|
||||
google-cloud-aiplatform~=1.12.0
|
||||
google-cloud-storage~=2.2.1
|
||||
google-cloud-aiplatform~=1.17.0
|
||||
google-cloud-storage~=2.5.0
|
||||
|
||||
##### Additional utilities
|
||||
|
||||
|
@ -73,23 +73,26 @@ google-cloud-storage~=2.2.1
|
|||
joblib~=1.1.0
|
||||
|
||||
# Easy http requests
|
||||
requests~=2.27.0
|
||||
requests~=2.28.1
|
||||
|
||||
# Nice utility to diff Jupyter Notebooks.
|
||||
nbdime~=3.1.0
|
||||
nbdime~=3.1.1
|
||||
|
||||
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
|
||||
# tutorial).
|
||||
numexpr~=2.8.0
|
||||
numexpr~=2.8.3
|
||||
|
||||
# Optional: these libraries can be useful in chapter 3, exercise 4.
|
||||
nltk~=3.6.5
|
||||
urlextract~=1.5.0
|
||||
nltk~=3.7
|
||||
urlextract~=1.6.0
|
||||
|
||||
# Optional: these libraries are only used in chapter 16
|
||||
ftfy~=5.5.0
|
||||
ftfy~=6.1.1
|
||||
|
||||
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook
|
||||
# support
|
||||
tqdm~=4.62.3
|
||||
ipywidgets~=7.6.5
|
||||
tqdm~=4.64.1
|
||||
ipywidgets~=8.0.2
|
||||
|
||||
# Optional: pydot is only used in chapter 10 for tf.keras.utils.plot_model()
|
||||
pydot~=1.4.2
|
||||
|
|
Loading…
Reference in New Issue