Replace HDF5 with TF format
parent
ace7a972b9
commit
7a551f5fb1
|
@ -3988,7 +3988,7 @@
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"model.save(\"my_sketchrnn\")"
|
"model.save(\"my_sketchrnn\", save_format=\"tf\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -4638,7 +4638,7 @@
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"model.save(\"my_bach_model.h5\")\n",
|
"model.save(\"my_bach_model\", save_format=\"tf\")\n",
|
||||||
"model.evaluate(test_set)"
|
"model.evaluate(test_set)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
|
|
@ -229,7 +229,7 @@
|
||||||
"model_name = \"my_mnist_model\"\n",
|
"model_name = \"my_mnist_model\"\n",
|
||||||
"model_version = \"0001\"\n",
|
"model_version = \"0001\"\n",
|
||||||
"model_path = Path(model_name) / model_version\n",
|
"model_path = Path(model_name) / model_version\n",
|
||||||
"model.save(model_path)"
|
"model.save(model_path, save_format=\"tf\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -706,7 +706,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"model_version = \"0002\"\n",
|
"model_version = \"0002\"\n",
|
||||||
"model_path = Path(model_name) / model_version\n",
|
"model_path = Path(model_name) / model_version\n",
|
||||||
"model.save(model_path)"
|
"model.save(model_path, save_format=\"tf\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1830,7 +1830,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"# extra code – shows that saving a model does not preserve its distribution\n",
|
"# extra code – shows that saving a model does not preserve its distribution\n",
|
||||||
"# strategy\n",
|
"# strategy\n",
|
||||||
"model.save(\"my_mirrored_model\")\n",
|
"model.save(\"my_mirrored_model\", save_format=\"tf\")\n",
|
||||||
"model = tf.keras.models.load_model(\"my_mirrored_model\")\n",
|
"model = tf.keras.models.load_model(\"my_mirrored_model\")\n",
|
||||||
"type(model.weights[0])"
|
"type(model.weights[0])"
|
||||||
]
|
]
|
||||||
|
@ -2151,10 +2151,10 @@
|
||||||
"model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10)\n",
|
"model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"if resolver.task_id == 0: # the chief saves the model to the right location\n",
|
"if resolver.task_id == 0: # the chief saves the model to the right location\n",
|
||||||
" model.save(\"my_mnist_multiworker_model\")\n",
|
" model.save(\"my_mnist_multiworker_model\", save_format=\"tf\")\n",
|
||||||
"else:\n",
|
"else:\n",
|
||||||
" tmpdir = tempfile.mkdtemp() # other workers save to a temporary directory\n",
|
" tmpdir = tempfile.mkdtemp() # other workers save to a temporary directory\n",
|
||||||
" model.save(tmpdir)\n",
|
" model.save(tmpdir, save_format=\"tf\")\n",
|
||||||
" tf.io.gfile.rmtree(tmpdir) # and we can delete this directory at the end!"
|
" tf.io.gfile.rmtree(tmpdir) # and we can delete this directory at the end!"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -2319,7 +2319,7 @@
|
||||||
"\n",
|
"\n",
|
||||||
"model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10,\n",
|
"model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10,\n",
|
||||||
" callbacks=callbacks)\n",
|
" callbacks=callbacks)\n",
|
||||||
"model.save(model_dir)"
|
"model.save(model_dir, save_format=\"tf\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -2471,7 +2471,7 @@
|
||||||
"model = build_model(args)\n",
|
"model = build_model(args)\n",
|
||||||
"history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid),\n",
|
"history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid),\n",
|
||||||
" epochs=10, callbacks=callbacks)\n",
|
" epochs=10, callbacks=callbacks)\n",
|
||||||
"model.save(model_dir) # extra code\n",
|
"model.save(model_dir, save_format=\"tf\") # extra code\n",
|
||||||
"\n",
|
"\n",
|
||||||
"import hypertune\n",
|
"import hypertune\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
@ -2771,7 +2771,7 @@
|
||||||
"if tuner_id == \"chief\":\n",
|
"if tuner_id == \"chief\":\n",
|
||||||
" best_hp = hyperband_tuner.get_best_hyperparameters()[0]\n",
|
" best_hp = hyperband_tuner.get_best_hyperparameters()[0]\n",
|
||||||
" best_model = hyperband_tuner.hypermodel.build(best_hp)\n",
|
" best_model = hyperband_tuner.hypermodel.build(best_hp)\n",
|
||||||
" best_model.save(os.getenv(\"AIP_MODEL_DIR\"))"
|
" best_model.save(os.getenv(\"AIP_MODEL_DIR\"), save_format=\"tf\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
Loading…
Reference in New Issue