From 81407ede2bd850c720787ba63363de9001ca3069 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Aur=C3=A9lien=20Geron?= Date: Mon, 1 Nov 2021 14:42:42 +1300 Subject: [PATCH] Replace np.round(a) with a.round(), and other similar changes --- 02_end_to_end_machine_learning_project.ipynb | 22 ++++++++++---------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/02_end_to_end_machine_learning_project.ipynb b/02_end_to_end_machine_learning_project.ipynb index 88161b5..02c3bf9 100644 --- a/02_end_to_end_machine_learning_project.ipynb +++ b/02_end_to_end_machine_learning_project.ipynb @@ -350,7 +350,7 @@ "metadata": {}, "outputs": [], "source": [ - "np.sum(test_set[\"total_bedrooms\"].isnull())" + "test_set[\"total_bedrooms\"].isnull().sum()" ] }, { @@ -1428,8 +1428,8 @@ "\n", " def fit(self, X, y=None): # y is required even though we don't use it\n", " X = check_array(X) # checks that X is an array with finite float values\n", - " self.mean_ = np.mean(X, axis=0)\n", - " self.scale_ = np.std(X, axis=0)\n", + " self.mean_ = X.mean(axis=0)\n", + " self.scale_ = X.std(axis=0)\n", " self.n_features_in_ = X.shape[1] # every estimator stores this in fit()\n", " return self # always return self!\n", "\n", @@ -1529,7 +1529,7 @@ "metadata": {}, "outputs": [], "source": [ - "np.round(similarities[:3], 2)" + "similarities[:3].round(2)" ] }, { @@ -1618,7 +1618,7 @@ "outputs": [], "source": [ "housing_num_prepared = num_pipeline.fit_transform(housing_num)\n", - "np.round(housing_num_prepared[:2], 2)" + "housing_num_prepared[:2].round(2)" ] }, { @@ -1881,7 +1881,7 @@ "outputs": [], "source": [ "housing_predictions = lin_reg.predict(housing)\n", - "np.round(housing_predictions[:5], -2)" + "housing_predictions[:5].round(-2)" ] }, { @@ -1907,7 +1907,7 @@ "outputs": [], "source": [ "# Not in the book\n", - "error_ratios = np.round(housing_predictions[:5], -2) / housing_labels.iloc[:5].values - 1\n", + "error_ratios = housing_predictions[:5].round(-2) / housing_labels.iloc[:5].values - 1\n", "print(\", \".join([f\"{100 * ratio:.1f}%\" for ratio in error_ratios]))" ] }, @@ -2151,7 +2151,7 @@ " \"split1_test_score\", \"split2_test_score\", \"mean_test_score\"]]\n", "score_cols = [\"split0\", \"split1\", \"split2\", \"mean_test_rmse\"]\n", "cv_res.columns = [\"n_clusters\", \"max_features\"] + score_cols\n", - "cv_res[score_cols] = -np.round(cv_res[score_cols]).astype(np.int64)\n", + "cv_res[score_cols] = -cv_res[score_cols].round().astype(np.int64)\n", "cv_res.head()" ] }, @@ -2212,7 +2212,7 @@ " \"param_random_forest__max_features\", \"split0_test_score\",\n", " \"split1_test_score\", \"split2_test_score\", \"mean_test_score\"]]\n", "cv_res.columns = [\"n_clusters\", \"max_features\"] + score_cols\n", - "cv_res[score_cols] = -np.round(cv_res[score_cols]).astype(np.int64)\n", + "cv_res[score_cols] = -cv_res[score_cols].round().astype(np.int64)\n", "cv_res.head()" ] }, @@ -2368,7 +2368,7 @@ "source": [ "final_model = rnd_search.best_estimator_\n", "feature_importances = final_model[\"random_forest\"].feature_importances_\n", - "np.round(feature_importances, 2)" + "feature_importances.round(2)" ] }, { @@ -2733,7 +2733,7 @@ "np.random.seed(42)\n", "\n", "s = expon(scale=1).rvs(100_000) # get 100,000 samples\n", - "np.sum((s > 0.105) & (s < 2.29)) / 100_000" + "((s > 0.105) & (s < 2.29)).sum() / 100_000" ] }, {