Use @ operator, fix animation (shorten, improve code, and zoom)
parent
0cdac2f683
commit
84c512121d
|
@ -20,10 +20,10 @@
|
|||
"source": [
|
||||
"<table align=\"left\">\n",
|
||||
" <td>\n",
|
||||
" <a href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/extra_gradient_descent_comparison.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n",
|
||||
" <a href=\"https://colab.research.google.com/github/ageron/handson-ml3/blob/main/extra_gradient_descent_comparison.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n",
|
||||
" </td>\n",
|
||||
" <td>\n",
|
||||
" <a target=\"_blank\" href=\"https://kaggle.com/kernels/welcome?src=https://github.com/ageron/handson-ml2/blob/master/extra_gradient_descent_comparison.ipynb\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" /></a>\n",
|
||||
" <a target=\"_blank\" href=\"https://kaggle.com/kernels/welcome?src=https://github.com/ageron/handson-ml3/blob/main/extra_gradient_descent_comparison.ipynb\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" /></a>\n",
|
||||
" </td>\n",
|
||||
"</table>"
|
||||
]
|
||||
|
@ -34,11 +34,11 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"%matplotlib nbagg\n",
|
||||
"import matplotlib\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from matplotlib.animation import FuncAnimation"
|
||||
"from matplotlib.animation import FuncAnimation\n",
|
||||
"\n",
|
||||
"matplotlib.rc('animation', html='jshtml')"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -47,10 +47,12 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"m = 100\n",
|
||||
"X = 2*np.random.rand(m, 1)\n",
|
||||
"X = 2 * np.random.rand(m, 1)\n",
|
||||
"X_b = np.c_[np.ones((m, 1)), X]\n",
|
||||
"y = 4 + 3*X + np.random.rand(m, 1)"
|
||||
"y = 4 + 3 * X + np.random.rand(m, 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -65,8 +67,8 @@
|
|||
" thetas = np.random.randn(2, 1)\n",
|
||||
" thetas_path = [thetas]\n",
|
||||
" for i in range(n_iterations):\n",
|
||||
" gradients = 2*X_b.T.dot(X_b.dot(thetas) - y)/m\n",
|
||||
" thetas = thetas - learning_rate*gradients\n",
|
||||
" gradients = 2 * X_b.T @ (X_b @ thetas - y) / m\n",
|
||||
" thetas = thetas - learning_rate * gradients\n",
|
||||
" thetas_path.append(thetas)\n",
|
||||
"\n",
|
||||
" return thetas_path"
|
||||
|
@ -88,9 +90,9 @@
|
|||
" random_index = np.random.randint(m)\n",
|
||||
" xi = X_b[random_index:random_index+1]\n",
|
||||
" yi = y[random_index:random_index+1]\n",
|
||||
" gradients = 2*xi.T.dot(xi.dot(thetas) - yi)\n",
|
||||
" eta = learning_schedule(epoch*m + i, t0, t1)\n",
|
||||
" thetas = thetas - eta*gradients\n",
|
||||
" gradients = 2 * xi.T @ (xi @ thetas - yi)\n",
|
||||
" eta = learning_schedule(epoch * m + i, t0, t1)\n",
|
||||
" thetas = thetas - eta * gradients\n",
|
||||
" thetas_path.append(thetas)\n",
|
||||
"\n",
|
||||
" return thetas_path"
|
||||
|
@ -115,11 +117,11 @@
|
|||
" y_shuffled = y[shuffled_indices]\n",
|
||||
" for i in range(0, m, minibatch_size):\n",
|
||||
" t += 1\n",
|
||||
" xi = X_b_shuffled[i:i+minibatch_size]\n",
|
||||
" yi = y_shuffled[i:i+minibatch_size]\n",
|
||||
" gradients = 2*xi.T.dot(xi.dot(thetas) - yi)/minibatch_size\n",
|
||||
" xi = X_b_shuffled[i : i + minibatch_size]\n",
|
||||
" yi = y_shuffled[i : i + minibatch_size]\n",
|
||||
" gradients = 2 * xi.T @ (xi @ thetas - yi) / minibatch_size\n",
|
||||
" eta = learning_schedule(t, t0, t1)\n",
|
||||
" thetas = thetas - eta*gradients\n",
|
||||
" thetas = thetas - eta * gradients\n",
|
||||
" thetas_path.append(thetas)\n",
|
||||
"\n",
|
||||
" return thetas_path"
|
||||
|
@ -132,7 +134,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"def compute_mse(theta):\n",
|
||||
" return np.sum((np.dot(X_b, theta) - y)**2)/m"
|
||||
" return ((X_b @ theta - y) ** 2).sum() / m"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -142,7 +144,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"def learning_schedule(t, t0, t1):\n",
|
||||
" return t0/(t+t1)"
|
||||
" return t0 / (t + t1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -166,7 +168,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"exact_solution = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)\n",
|
||||
"exact_solution = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y\n",
|
||||
"bgd_thetas = np.array(batch_gradient_descent())\n",
|
||||
"sgd_thetas = np.array(stochastic_gradient_descent())\n",
|
||||
"mbgd_thetas = np.array(mini_batch_gradient_descent())"
|
||||
|
@ -194,9 +196,38 @@
|
|||
"data_ax = fig.add_subplot(121)\n",
|
||||
"cost_ax = fig.add_subplot(122)\n",
|
||||
"\n",
|
||||
"data_ax.plot(X, y, 'k.')\n",
|
||||
"\n",
|
||||
"cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n",
|
||||
"cost_img = cost_ax.pcolor(theta0, theta1, cost_map)\n",
|
||||
"fig.colorbar(cost_img)"
|
||||
"cost_ax.pcolor(theta0, theta1, cost_map, shading='auto')\n",
|
||||
"\n",
|
||||
"i = -1\n",
|
||||
"[bgd_data_plot] = data_ax.plot(X, X_b @ bgd_thetas[i,:], 'r-')\n",
|
||||
"[bgd_cost_plot] = cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--')\n",
|
||||
"\n",
|
||||
"[sgd_data_plot] = data_ax.plot(X, X_b @ sgd_thetas[i,:], 'g-')\n",
|
||||
"[sgd_cost_plot] = cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--')\n",
|
||||
"\n",
|
||||
"[mbgd_data_plot] = data_ax.plot(X, X_b @ mbgd_thetas[i,:], 'b-')\n",
|
||||
"[mbgd_cost_plot] = cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--')\n",
|
||||
"\n",
|
||||
"data_ax.set_xlim([0, 2])\n",
|
||||
"data_ax.set_ylim([0, 15])\n",
|
||||
"cost_ax.set_xlim([3, 5])\n",
|
||||
"cost_ax.set_ylim([2, 5])\n",
|
||||
"\n",
|
||||
"data_ax.set_xlabel(r'$x_1$')\n",
|
||||
"data_ax.set_ylabel(r'$y$', rotation=0)\n",
|
||||
"cost_ax.set_xlabel(r'$\\theta_0$')\n",
|
||||
"cost_ax.set_ylabel(r'$\\theta_1$')\n",
|
||||
"\n",
|
||||
"data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")\n",
|
||||
"cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")\n",
|
||||
"\n",
|
||||
"cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n",
|
||||
"cost_img = cost_ax.pcolor(theta0, theta1, cost_map, shading='auto')\n",
|
||||
"fig.colorbar(cost_img)\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -206,35 +237,14 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"def animate(i):\n",
|
||||
" data_ax.cla()\n",
|
||||
" cost_ax.cla()\n",
|
||||
" bgd_data_plot.set_data(X, X_b @ bgd_thetas[i,:])\n",
|
||||
" bgd_cost_plot.set_data(bgd_thetas[:i,0], bgd_thetas[:i,1])\n",
|
||||
"\n",
|
||||
" data_ax.plot(X, y, 'k.')\n",
|
||||
" sgd_data_plot.set_data(X, X_b @ sgd_thetas[i,:])\n",
|
||||
" sgd_cost_plot.set_data(sgd_thetas[:i,0], sgd_thetas[:i,1])\n",
|
||||
"\n",
|
||||
" cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n",
|
||||
" cost_ax.pcolor(theta0, theta1, cost_map)\n",
|
||||
"\n",
|
||||
" data_ax.plot(X, X_b.dot(bgd_thetas[i,:]), 'r-')\n",
|
||||
" cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--')\n",
|
||||
"\n",
|
||||
" data_ax.plot(X, X_b.dot(sgd_thetas[i,:]), 'g-')\n",
|
||||
" cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--')\n",
|
||||
"\n",
|
||||
" data_ax.plot(X, X_b.dot(mbgd_thetas[i,:]), 'b-')\n",
|
||||
" cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--')\n",
|
||||
"\n",
|
||||
" data_ax.set_xlim([0, 2])\n",
|
||||
" data_ax.set_ylim([0, 15])\n",
|
||||
" cost_ax.set_xlim([0, 5])\n",
|
||||
" cost_ax.set_ylim([0, 5])\n",
|
||||
"\n",
|
||||
" data_ax.set_xlabel(r'$x_1$')\n",
|
||||
" data_ax.set_ylabel(r'$y$', rotation=0)\n",
|
||||
" cost_ax.set_xlabel(r'$\\theta_0$')\n",
|
||||
" cost_ax.set_ylabel(r'$\\theta_1$')\n",
|
||||
"\n",
|
||||
" data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")\n",
|
||||
" cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")"
|
||||
" mbgd_data_plot.set_data(X, X_b @ mbgd_thetas[i,:])\n",
|
||||
" mbgd_cost_plot.set_data(mbgd_thetas[:i,0], mbgd_thetas[:i,1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -243,8 +253,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"animation = FuncAnimation(fig, animate, frames=n_iter)\n",
|
||||
"plt.show()"
|
||||
"FuncAnimation(fig, animate, frames=n_iter // 3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue