diff --git a/extra_capsnets.ipynb b/extra_capsnets.ipynb index cdfeb2d..20e5dd1 100644 --- a/extra_capsnets.ipynb +++ b/extra_capsnets.ipynb @@ -77,10 +77,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, + "execution_count": 3, + "metadata": {}, "outputs": [], "source": [ "from __future__ import division, print_function, unicode_literals" @@ -95,10 +93,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, + "execution_count": 4, + "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", @@ -115,10 +111,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, + "execution_count": 5, + "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", @@ -141,10 +135,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": true - }, + "execution_count": 6, + "metadata": {}, "outputs": [], "source": [ "tf.reset_default_graph()" @@ -159,10 +151,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", @@ -185,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -203,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -228,7 +218,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -286,10 +276,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true - }, + "execution_count": 11, + "metadata": {}, "outputs": [], "source": [ "X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name=\"X\")" @@ -311,10 +299,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, + "execution_count": 12, + "metadata": {}, "outputs": [], "source": [ "caps1_n_maps = 32\n", @@ -331,10 +317,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, + "execution_count": 13, + "metadata": {}, "outputs": [], "source": [ "conv1_params = {\n", @@ -356,10 +340,8 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": true - }, + "execution_count": 14, + "metadata": {}, "outputs": [], "source": [ "conv1 = tf.layers.conv2d(X, name=\"conv1\", **conv1_params)\n", @@ -382,10 +364,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, + "execution_count": 15, + "metadata": {}, "outputs": [], "source": [ "caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims],\n", @@ -407,10 +387,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": true - }, + "execution_count": 16, + "metadata": {}, "outputs": [], "source": [ "def squash(s, axis=-1, epsilon=1e-7, name=None):\n", @@ -432,10 +410,8 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true - }, + "execution_count": 17, + "metadata": {}, "outputs": [], "source": [ "caps1_output = squash(caps1_raw, name=\"caps1_output\")" @@ -478,10 +454,8 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": true - }, + "execution_count": 18, + "metadata": {}, "outputs": [], "source": [ "caps2_n_caps = 10\n", @@ -568,10 +542,8 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": true - }, + "execution_count": 19, + "metadata": {}, "outputs": [], "source": [ "init_sigma = 0.01\n", @@ -591,10 +563,8 @@ }, { "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": true - }, + "execution_count": 20, + "metadata": {}, "outputs": [], "source": [ "batch_size = tf.shape(X)[0]\n", @@ -610,10 +580,8 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": true - }, + "execution_count": 21, + "metadata": {}, "outputs": [], "source": [ "caps1_output_expanded = tf.expand_dims(caps1_output, -1,\n", @@ -633,7 +601,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -649,7 +617,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -665,10 +633,8 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": true - }, + "execution_count": 24, + "metadata": {}, "outputs": [], "source": [ "caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled,\n", @@ -684,7 +650,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -714,10 +680,8 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": true - }, + "execution_count": 26, + "metadata": {}, "outputs": [], "source": [ "raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1],\n", @@ -747,10 +711,8 @@ }, { "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": true - }, + "execution_count": 27, + "metadata": {}, "outputs": [], "source": [ "routing_weights = tf.nn.softmax(raw_weights, dim=2, name=\"routing_weights\")" @@ -765,10 +727,8 @@ }, { "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": true - }, + "execution_count": 28, + "metadata": {}, "outputs": [], "source": [ "weighted_predictions = tf.multiply(routing_weights, caps2_predicted,\n", @@ -797,10 +757,8 @@ }, { "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": true - }, + "execution_count": 29, + "metadata": {}, "outputs": [], "source": [ "caps2_output_round_1 = squash(weighted_sum, axis=-2,\n", @@ -809,7 +767,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -853,7 +811,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -869,7 +827,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -885,10 +843,8 @@ }, { "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": true - }, + "execution_count": 33, + "metadata": {}, "outputs": [], "source": [ "caps2_output_round_1_tiled = tf.tile(\n", @@ -905,10 +861,8 @@ }, { "cell_type": "code", - "execution_count": 33, - "metadata": { - "collapsed": true - }, + "execution_count": 34, + "metadata": {}, "outputs": [], "source": [ "agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled,\n", @@ -924,10 +878,8 @@ }, { "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": true - }, + "execution_count": 35, + "metadata": {}, "outputs": [], "source": [ "raw_weights_round_2 = tf.add(raw_weights, agreement,\n", @@ -943,10 +895,8 @@ }, { "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": true - }, + "execution_count": 36, + "metadata": {}, "outputs": [], "source": [ "routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2,\n", @@ -972,10 +922,8 @@ }, { "cell_type": "code", - "execution_count": 36, - "metadata": { - "collapsed": true - }, + "execution_count": 37, + "metadata": {}, "outputs": [], "source": [ "caps2_output = caps2_output_round_2" @@ -1003,7 +951,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -1043,7 +991,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -1073,10 +1021,8 @@ }, { "cell_type": "code", - "execution_count": 39, - "metadata": { - "collapsed": true - }, + "execution_count": 40, + "metadata": {}, "outputs": [], "source": [ "def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None):\n", @@ -1088,10 +1034,8 @@ }, { "cell_type": "code", - "execution_count": 40, - "metadata": { - "collapsed": true - }, + "execution_count": 41, + "metadata": {}, "outputs": [], "source": [ "y_proba = safe_norm(caps2_output, axis=-2, name=\"y_proba\")" @@ -1106,10 +1050,8 @@ }, { "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": true - }, + "execution_count": 42, + "metadata": {}, "outputs": [], "source": [ "y_proba_argmax = tf.argmax(y_proba, axis=2, name=\"y_proba\")" @@ -1124,7 +1066,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ @@ -1140,10 +1082,8 @@ }, { "cell_type": "code", - "execution_count": 43, - "metadata": { - "collapsed": true - }, + "execution_count": 44, + "metadata": {}, "outputs": [], "source": [ "y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name=\"y_pred\")" @@ -1151,7 +1091,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -1181,10 +1121,8 @@ }, { "cell_type": "code", - "execution_count": 45, - "metadata": { - "collapsed": true - }, + "execution_count": 46, + "metadata": {}, "outputs": [], "source": [ "y = tf.placeholder(shape=[None], dtype=tf.int64, name=\"y\")" @@ -1212,10 +1150,8 @@ }, { "cell_type": "code", - "execution_count": 46, - "metadata": { - "collapsed": true - }, + "execution_count": 47, + "metadata": {}, "outputs": [], "source": [ "m_plus = 0.9\n", @@ -1232,10 +1168,8 @@ }, { "cell_type": "code", - "execution_count": 47, - "metadata": { - "collapsed": true - }, + "execution_count": 48, + "metadata": {}, "outputs": [], "source": [ "T = tf.one_hot(y, depth=caps2_n_caps, name=\"T\")" @@ -1250,7 +1184,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -1267,7 +1201,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -1283,10 +1217,8 @@ }, { "cell_type": "code", - "execution_count": 50, - "metadata": { - "collapsed": true - }, + "execution_count": 51, + "metadata": {}, "outputs": [], "source": [ "caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True,\n", @@ -1302,10 +1234,8 @@ }, { "cell_type": "code", - "execution_count": 51, - "metadata": { - "collapsed": true - }, + "execution_count": 52, + "metadata": {}, "outputs": [], "source": [ "present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm),\n", @@ -1323,10 +1253,8 @@ }, { "cell_type": "code", - "execution_count": 52, - "metadata": { - "collapsed": true - }, + "execution_count": 53, + "metadata": {}, "outputs": [], "source": [ "absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus),\n", @@ -1344,10 +1272,8 @@ }, { "cell_type": "code", - "execution_count": 53, - "metadata": { - "collapsed": true - }, + "execution_count": 54, + "metadata": {}, "outputs": [], "source": [ "L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error,\n", @@ -1363,10 +1289,8 @@ }, { "cell_type": "code", - "execution_count": 54, - "metadata": { - "collapsed": true - }, + "execution_count": 55, + "metadata": {}, "outputs": [], "source": [ "margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name=\"margin_loss\")" @@ -1409,10 +1333,8 @@ }, { "cell_type": "code", - "execution_count": 55, - "metadata": { - "collapsed": true - }, + "execution_count": 56, + "metadata": {}, "outputs": [], "source": [ "mask_with_labels = tf.placeholder_with_default(False, shape=(),\n", @@ -1428,10 +1350,8 @@ }, { "cell_type": "code", - "execution_count": 56, - "metadata": { - "collapsed": true - }, + "execution_count": 57, + "metadata": {}, "outputs": [], "source": [ "reconstruction_targets = tf.cond(mask_with_labels, # condition\n", @@ -1458,10 +1378,8 @@ }, { "cell_type": "code", - "execution_count": 57, - "metadata": { - "collapsed": true - }, + "execution_count": 58, + "metadata": {}, "outputs": [], "source": [ "reconstruction_mask = tf.one_hot(reconstruction_targets,\n", @@ -1478,7 +1396,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 59, "metadata": {}, "outputs": [], "source": [ @@ -1494,7 +1412,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -1510,10 +1428,8 @@ }, { "cell_type": "code", - "execution_count": 60, - "metadata": { - "collapsed": true - }, + "execution_count": 61, + "metadata": {}, "outputs": [], "source": [ "reconstruction_mask_reshaped = tf.reshape(\n", @@ -1530,10 +1446,8 @@ }, { "cell_type": "code", - "execution_count": 61, - "metadata": { - "collapsed": true - }, + "execution_count": 62, + "metadata": {}, "outputs": [], "source": [ "caps2_output_masked = tf.multiply(\n", @@ -1543,7 +1457,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 63, "metadata": {}, "outputs": [], "source": [ @@ -1559,10 +1473,8 @@ }, { "cell_type": "code", - "execution_count": 63, - "metadata": { - "collapsed": true - }, + "execution_count": 64, + "metadata": {}, "outputs": [], "source": [ "decoder_input = tf.reshape(caps2_output_masked,\n", @@ -1579,7 +1491,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -1602,10 +1514,8 @@ }, { "cell_type": "code", - "execution_count": 65, - "metadata": { - "collapsed": true - }, + "execution_count": 66, + "metadata": {}, "outputs": [], "source": [ "n_hidden1 = 512\n", @@ -1615,10 +1525,8 @@ }, { "cell_type": "code", - "execution_count": 66, - "metadata": { - "collapsed": true - }, + "execution_count": 67, + "metadata": {}, "outputs": [], "source": [ "with tf.name_scope(\"decoder\"):\n", @@ -1649,16 +1557,14 @@ }, { "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": true - }, + "execution_count": 68, + "metadata": {}, "outputs": [], "source": [ "X_flat = tf.reshape(X, [-1, n_output], name=\"X_flat\")\n", "squared_difference = tf.square(X_flat - decoder_output,\n", " name=\"squared_difference\")\n", - "reconstruction_loss = tf.reduce_sum(squared_difference,\n", + "reconstruction_loss = tf.reduce_mean(squared_difference,\n", " name=\"reconstruction_loss\")" ] }, @@ -1678,10 +1584,8 @@ }, { "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true - }, + "execution_count": 69, + "metadata": {}, "outputs": [], "source": [ "alpha = 0.0005\n", @@ -1712,10 +1616,8 @@ }, { "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": true - }, + "execution_count": 70, + "metadata": {}, "outputs": [], "source": [ "correct = tf.equal(y, y_pred, name=\"correct\")\n", @@ -1738,10 +1640,8 @@ }, { "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": true - }, + "execution_count": 71, + "metadata": {}, "outputs": [], "source": [ "optimizer = tf.train.AdamOptimizer()\n", @@ -1764,10 +1664,8 @@ }, { "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": true - }, + "execution_count": 72, + "metadata": {}, "outputs": [], "source": [ "init = tf.global_variables_initializer()\n", @@ -1804,7 +1702,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ @@ -1870,7 +1768,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Training is finished, we reached over 99.3% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set." + "Training is finished, we reached over 99.4% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set." ] }, { @@ -1882,7 +1780,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -1915,7 +1813,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We reach 99.43% accuracy on the test set. Pretty nice. :)" + "We reach 99.53% accuracy on the test set. Pretty nice. :)" ] }, { @@ -1934,7 +1832,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 75, "metadata": {}, "outputs": [], "source": [ @@ -1966,7 +1864,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 76, "metadata": {}, "outputs": [], "source": [ @@ -2022,7 +1920,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 77, "metadata": {}, "outputs": [], "source": [ @@ -2038,10 +1936,8 @@ }, { "cell_type": "code", - "execution_count": 77, - "metadata": { - "collapsed": true - }, + "execution_count": 78, + "metadata": {}, "outputs": [], "source": [ "def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11):\n", @@ -2062,10 +1958,8 @@ }, { "cell_type": "code", - "execution_count": 78, - "metadata": { - "collapsed": true - }, + "execution_count": 79, + "metadata": {}, "outputs": [], "source": [ "n_steps = 11\n", @@ -2084,7 +1978,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ @@ -2108,10 +2002,8 @@ }, { "cell_type": "code", - "execution_count": 80, - "metadata": { - "collapsed": true - }, + "execution_count": 81, + "metadata": {}, "outputs": [], "source": [ "tweak_reconstructions = decoder_output_value.reshape(\n", @@ -2127,7 +2019,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ @@ -2161,9 +2053,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] }